Dynamic Parameter Estimation Based on Rank-Reduced Prony Analysis

Anas Almunif, Lingling Fan
{"title":"Dynamic Parameter Estimation Based on Rank-Reduced Prony Analysis","authors":"Anas Almunif, Lingling Fan","doi":"10.1109/NAPS50074.2021.9449703","DOIUrl":null,"url":null,"abstract":"This paper presents a new least squares estimation (LSE)-based dynamic parameter estimation technique using phasor measurement unit (PMU) data. Generator parameters such as inertia constant, damping coefficients, and regulation speed constant are estimated from captured measurements during transient events. The key idea of this dynamic parameter estimation is based on unknown model structure and reduced-order model. This approach depends on measurement-based methods for ringdown signals. A rank-reduced Prony analysis is employed to accurately identify the system eigenvalues with reduced-order model. Then an optimization problem is formulated to obtain the system matrix and estimate the dynamic parameters. Sensitivity analysis is performed to the optimization problem to find the best parameter estimates.","PeriodicalId":170486,"journal":{"name":"2020 52nd North American Power Symposium (NAPS)","volume":"517 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 52nd North American Power Symposium (NAPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAPS50074.2021.9449703","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a new least squares estimation (LSE)-based dynamic parameter estimation technique using phasor measurement unit (PMU) data. Generator parameters such as inertia constant, damping coefficients, and regulation speed constant are estimated from captured measurements during transient events. The key idea of this dynamic parameter estimation is based on unknown model structure and reduced-order model. This approach depends on measurement-based methods for ringdown signals. A rank-reduced Prony analysis is employed to accurately identify the system eigenvalues with reduced-order model. Then an optimization problem is formulated to obtain the system matrix and estimate the dynamic parameters. Sensitivity analysis is performed to the optimization problem to find the best parameter estimates.
基于降阶proony分析的动态参数估计
提出了一种利用相量测量单元(PMU)数据进行基于最小二乘估计(LSE)的动态参数估计方法。发电机参数,如惯性常数,阻尼系数,调节速度常数估计从捕获的测量瞬态事件。这种动态参数估计的核心思想是基于未知模型结构和降阶模型。这种方法依赖于基于测量的灭响信号方法。利用降阶模型,采用降阶proony分析法准确识别系统特征值。在此基础上,提出了求解系统矩阵和估计系统动态参数的优化问题。对优化问题进行了灵敏度分析,找到了最优的参数估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信