Hybrid learning neuro-fuzzy approach for complex modeling using asymmetric fuzzy sets

Chunshien Li, K. Cheng, Jiann-Der Lee
{"title":"Hybrid learning neuro-fuzzy approach for complex modeling using asymmetric fuzzy sets","authors":"Chunshien Li, K. Cheng, Jiann-Der Lee","doi":"10.1109/ICTAI.2005.73","DOIUrl":null,"url":null,"abstract":"A hybrid learning neuro-fuzzy system with asymmetric fuzzy sets (HLNFS-A) is proposed in this paper. The learning methods of random optimization (RO) and least square estimation (LSE) are used in hybrid way to train the system parameters of HLNFS-A to achieve stable and fast convergence. In the HLNFS-A, the premise and the consequent parameters are updated by RO and LSE, respectively. With the proposed asymmetric fuzzy sets (AFS), the neuro-fuzzy system can capture the essence of nonlinear property of dynamic system, when used in the application of modeling. To demonstrate the feasibility and the potential of the proposed approach, an example of chaotic time series for system identification and prediction is given to verify the nonlinear mapping capability of the HLNFS-A. The experimental results show that the proposed HLNFS-A can achieve excellent performance for system modeling","PeriodicalId":294694,"journal":{"name":"17th IEEE International Conference on Tools with Artificial Intelligence (ICTAI'05)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"17th IEEE International Conference on Tools with Artificial Intelligence (ICTAI'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTAI.2005.73","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

A hybrid learning neuro-fuzzy system with asymmetric fuzzy sets (HLNFS-A) is proposed in this paper. The learning methods of random optimization (RO) and least square estimation (LSE) are used in hybrid way to train the system parameters of HLNFS-A to achieve stable and fast convergence. In the HLNFS-A, the premise and the consequent parameters are updated by RO and LSE, respectively. With the proposed asymmetric fuzzy sets (AFS), the neuro-fuzzy system can capture the essence of nonlinear property of dynamic system, when used in the application of modeling. To demonstrate the feasibility and the potential of the proposed approach, an example of chaotic time series for system identification and prediction is given to verify the nonlinear mapping capability of the HLNFS-A. The experimental results show that the proposed HLNFS-A can achieve excellent performance for system modeling
非对称模糊集复杂建模的混合学习神经模糊方法
提出了一种具有非对称模糊集的混合学习神经模糊系统(HLNFS-A)。采用随机优化(RO)和最小二乘估计(LSE)的混合学习方法对hlfs - a系统参数进行训练,达到稳定、快速收敛的目的。在hlfs - a中,前提参数和结果参数分别由RO和LSE更新。利用所提出的不对称模糊集(AFS),神经模糊系统在建模应用中能够捕捉到动态系统非线性特性的本质。为了证明该方法的可行性和潜力,给出了一个用于系统识别和预测的混沌时间序列实例来验证HLNFS-A的非线性映射能力。实验结果表明,所提出的HLNFS-A算法能够达到良好的系统建模性能
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信