{"title":"Never Too Late: Tracing and Mitigating Backdoor Attacks in Federated Learning","authors":"Hui Zeng, Tongqing Zhou, Xinyi Wu, Zhiping Cai","doi":"10.1109/SRDS55811.2022.00017","DOIUrl":null,"url":null,"abstract":"The privacy-preserving nature of Federated Learning (FL) exposes such a distributed learning paradigm to the planting of backdoors with locally corrupted data. We discover that FL backdoors, under a new on-off multi-shot attack form, are essentially stealthy against existing defenses that are built on model statistics and spectral analysis. First-hand observations of such attacks show that the backdoored models are indistinguishable from normal ones w.r.t. both low-level and high-level representations. We thus emphasize that a critical redemption, if not the only, for the tricky stealthiness is reactive tracing and posterior mitigation. A three-step remedy framework is then proposed by exploring the temporal and inferential correlations of models on a trapped sample from an attack. In particular, we use shift ensemble detection and co-occurrence analysis for adversary identification, and repair the model via malicious ingredients removal under theoretical error guarantee. Extensive experiments on various backdoor settings demonstrate that our framework can achieve accuracy on attack round identification of ∼80% and on attackers of ∼50%, which are ∼28.76% better than existing proactive defenses. Meanwhile, it can successfully eliminate the influence of backdoors with only a 5%∼6% performance drop.","PeriodicalId":143115,"journal":{"name":"2022 41st International Symposium on Reliable Distributed Systems (SRDS)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 41st International Symposium on Reliable Distributed Systems (SRDS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SRDS55811.2022.00017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
The privacy-preserving nature of Federated Learning (FL) exposes such a distributed learning paradigm to the planting of backdoors with locally corrupted data. We discover that FL backdoors, under a new on-off multi-shot attack form, are essentially stealthy against existing defenses that are built on model statistics and spectral analysis. First-hand observations of such attacks show that the backdoored models are indistinguishable from normal ones w.r.t. both low-level and high-level representations. We thus emphasize that a critical redemption, if not the only, for the tricky stealthiness is reactive tracing and posterior mitigation. A three-step remedy framework is then proposed by exploring the temporal and inferential correlations of models on a trapped sample from an attack. In particular, we use shift ensemble detection and co-occurrence analysis for adversary identification, and repair the model via malicious ingredients removal under theoretical error guarantee. Extensive experiments on various backdoor settings demonstrate that our framework can achieve accuracy on attack round identification of ∼80% and on attackers of ∼50%, which are ∼28.76% better than existing proactive defenses. Meanwhile, it can successfully eliminate the influence of backdoors with only a 5%∼6% performance drop.