MPC-Based Control of Autonomous Vehicles With Localized Path Planning for Obstacle Avoidance Under Uncertainties

Sai Rajeev Devaragudi, Bo Chen
{"title":"MPC-Based Control of Autonomous Vehicles With Localized Path Planning for Obstacle Avoidance Under Uncertainties","authors":"Sai Rajeev Devaragudi, Bo Chen","doi":"10.1115/detc2019-97712","DOIUrl":null,"url":null,"abstract":"\n This paper presents a Model Predictive Control (MPC) approach for longitudinal and lateral control of autonomous vehicles with a real-time local path planning algorithm. A heuristic graph search method (A* algorithm) combined with piecewise Bezier curve generation is implemented for obstacle avoidance in autonomous driving applications. Constant time headway control is implemented for a longitudinal motion to track lead vehicles and maintain a constant time gap. MPC is used to control the steering angle and the tractive force of the autonomous vehicle. Furthermore, a new method of developing Advanced Driver Assistance Systems (ADAS) algorithms and vehicle controllers using Model-In-the-Loop (MIL) testing is explored with the use of PreScan®. With PreScan®, various traffic scenarios are modeled and the sensor data are simulated by using physics-based sensor models, which are fed to the controller for data processing and motion planning. Obstacle detection and collision avoidance are demonstrated using the presented MPC controller.","PeriodicalId":166402,"journal":{"name":"Volume 9: 15th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 9: 15th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/detc2019-97712","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper presents a Model Predictive Control (MPC) approach for longitudinal and lateral control of autonomous vehicles with a real-time local path planning algorithm. A heuristic graph search method (A* algorithm) combined with piecewise Bezier curve generation is implemented for obstacle avoidance in autonomous driving applications. Constant time headway control is implemented for a longitudinal motion to track lead vehicles and maintain a constant time gap. MPC is used to control the steering angle and the tractive force of the autonomous vehicle. Furthermore, a new method of developing Advanced Driver Assistance Systems (ADAS) algorithms and vehicle controllers using Model-In-the-Loop (MIL) testing is explored with the use of PreScan®. With PreScan®, various traffic scenarios are modeled and the sensor data are simulated by using physics-based sensor models, which are fed to the controller for data processing and motion planning. Obstacle detection and collision avoidance are demonstrated using the presented MPC controller.
不确定条件下基于mpc的自动驾驶车辆局部路径规划控制
本文提出了一种基于实时局部路径规划算法的自动驾驶汽车纵向和横向控制模型预测控制(MPC)方法。提出了一种结合分段贝塞尔曲线生成的启发式图搜索方法(A*算法),用于自动驾驶中的避障。在纵向运动中实现恒时车头距控制,以跟踪领先车辆并保持恒定的时间间隔。MPC用于控制自动驾驶汽车的转向角和牵引力。此外,使用PreScan®探索了一种使用模型在环(MIL)测试开发高级驾驶辅助系统(ADAS)算法和车辆控制器的新方法。使用PreScan®,可以对各种交通场景进行建模,并通过使用基于物理的传感器模型模拟传感器数据,这些模型被馈送到控制器进行数据处理和运动规划。利用所提出的MPC控制器演示了障碍物检测和碰撞避免。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信