Using machine learning to assess efficiency of tuberculosis service

K. Shakhgeldyan, D. V. Gmar, B. Geltser
{"title":"Using machine learning to assess efficiency of tuberculosis service","authors":"K. Shakhgeldyan, D. V. Gmar, B. Geltser","doi":"10.1109/RPC.2017.8168091","DOIUrl":null,"url":null,"abstract":"The purpose of the study was to assess the impact of the availability of TB care on the TB epidemic process. Processing and analysis were performed using methods of machine learning: cluster analysis, linear regression analysis and autoregressive models. It is shown that clusters with the severe epidemic situation are characterized by low staff availability in all its indicators and vice versa. The staff availability of TB care is the most important factor affecting the TB process.","PeriodicalId":144625,"journal":{"name":"2017 Second Russia and Pacific Conference on Computer Technology and Applications (RPC)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Second Russia and Pacific Conference on Computer Technology and Applications (RPC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RPC.2017.8168091","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The purpose of the study was to assess the impact of the availability of TB care on the TB epidemic process. Processing and analysis were performed using methods of machine learning: cluster analysis, linear regression analysis and autoregressive models. It is shown that clusters with the severe epidemic situation are characterized by low staff availability in all its indicators and vice versa. The staff availability of TB care is the most important factor affecting the TB process.
利用机器学习评估结核病服务效率
本研究的目的是评估结核病治疗的可获得性对结核病流行过程的影响。使用机器学习方法进行处理和分析:聚类分析,线性回归分析和自回归模型。结果表明,疫情严重的群集的特点是其所有指标的工作人员可用性都很低,反之亦然。工作人员能否获得结核病治疗是影响结核病治疗进程的最重要因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信