{"title":"Fast and accurate solutions of extremely large scattering problems involving three-dimensional canonical and complicated objects","authors":"O. Ergul, L. Gurel","doi":"10.1109/CEM.2009.5228112","DOIUrl":null,"url":null,"abstract":"We present fast and accurate solutions of extremely large scattering problems involving three-dimensional metallic objects discretized with hundreds of millions of unknowns. Solutions are performed by the multilevel fast multipole algorithm, which is parallelized efficiently via a hierarchical partition strategy. Various examples involving canonical and complicated objects are presented in order to demonstrate the feasibility of accurately solving large-scale problems on relatively inexpensive computing platforms without resorting to approximation techniques.","PeriodicalId":416029,"journal":{"name":"2009 Computational Electromagnetics International Workshop","volume":"29 34","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Computational Electromagnetics International Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEM.2009.5228112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We present fast and accurate solutions of extremely large scattering problems involving three-dimensional metallic objects discretized with hundreds of millions of unknowns. Solutions are performed by the multilevel fast multipole algorithm, which is parallelized efficiently via a hierarchical partition strategy. Various examples involving canonical and complicated objects are presented in order to demonstrate the feasibility of accurately solving large-scale problems on relatively inexpensive computing platforms without resorting to approximation techniques.