Application of Cesium Carbonate Modified Electron Transport Layer to Enhance Performance of Perovskite Solar Cells

Tangxi Chen, Li-Jung Liu, Yu-Chi Tsao, J. Tsai, T. Wu, Yudan Luo, T. Meen, Chi-Ting Ho
{"title":"Application of Cesium Carbonate Modified Electron Transport Layer to Enhance Performance of Perovskite Solar Cells","authors":"Tangxi Chen, Li-Jung Liu, Yu-Chi Tsao, J. Tsai, T. Wu, Yudan Luo, T. Meen, Chi-Ting Ho","doi":"10.1109/ECICE52819.2021.9645675","DOIUrl":null,"url":null,"abstract":"Titanium dioxide (TiO2) is the most commonly used material for the electron transport layer in perovskite solar cells (PSC), but its material defects have affected the development of perovskite solar cells. In this study, cesium carbonate (Cs2CO3) was used to modify the electron transport layer to make it have better electronic conductivity. The structure of the modified perovskite solar cell is FTO/Compact TiO2/mesoporous TiO2/ Cs2CO3/ perovskite layer (MAPbI3)/ sprio-OMETAD/ Au back electrode. The obtained samples were characterized by X-ray diffraction (XRD), ultraviolet/ visible spectrophotometer (UV-Vis), scanning electron microscope (SEM), energy-dispersive X-ray spectroscopy (EDS), and monochromatic incident photon-to-electron conversion. IPCE). In this experiment, six different concentrations of Cs2CO3 were used, 0M (0.90), 0.01M (1.19), 0.02M (1.37), 0.03M (1.55), 0.04M (1.06), 0.05M (0.59). We found 0.03 M cesium is the most suitable concentration for modifying the electron transport layer. Compared to unmodified solar cells, adding a modified layer does not affect the size and thickness of the electron transport layer. The photoelectric conversion efficiency has also increased from 0.90 to 1.55%.","PeriodicalId":176225,"journal":{"name":"2021 IEEE 3rd Eurasia Conference on IOT, Communication and Engineering (ECICE)","volume":"98 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 3rd Eurasia Conference on IOT, Communication and Engineering (ECICE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECICE52819.2021.9645675","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Titanium dioxide (TiO2) is the most commonly used material for the electron transport layer in perovskite solar cells (PSC), but its material defects have affected the development of perovskite solar cells. In this study, cesium carbonate (Cs2CO3) was used to modify the electron transport layer to make it have better electronic conductivity. The structure of the modified perovskite solar cell is FTO/Compact TiO2/mesoporous TiO2/ Cs2CO3/ perovskite layer (MAPbI3)/ sprio-OMETAD/ Au back electrode. The obtained samples were characterized by X-ray diffraction (XRD), ultraviolet/ visible spectrophotometer (UV-Vis), scanning electron microscope (SEM), energy-dispersive X-ray spectroscopy (EDS), and monochromatic incident photon-to-electron conversion. IPCE). In this experiment, six different concentrations of Cs2CO3 were used, 0M (0.90), 0.01M (1.19), 0.02M (1.37), 0.03M (1.55), 0.04M (1.06), 0.05M (0.59). We found 0.03 M cesium is the most suitable concentration for modifying the electron transport layer. Compared to unmodified solar cells, adding a modified layer does not affect the size and thickness of the electron transport layer. The photoelectric conversion efficiency has also increased from 0.90 to 1.55%.
碳酸铯修饰电子传输层在钙钛矿太阳能电池中的应用
二氧化钛(TiO2)是钙钛矿太阳能电池(PSC)中最常用的电子传输层材料,但其材料缺陷影响了钙钛矿太阳能电池的发展。本研究采用碳酸铯(Cs2CO3)对电子传递层进行修饰,使其具有更好的电子导电性。改性钙钛矿太阳能电池的结构为FTO/致密TiO2/介孔TiO2/ Cs2CO3/钙钛矿层(MAPbI3)/ sprio-OMETAD/ Au背电极。采用x射线衍射仪(XRD)、紫外/可见分光光度计(UV-Vis)、扫描电镜(SEM)、能量色散x射线能谱仪(EDS)和单色入射光子-电子转换等手段对所得样品进行了表征。IPCE)。实验采用6种不同浓度的Cs2CO3,分别为0M(0.90)、0.01M(1.19)、0.02M(1.37)、0.0m(1.55)、0.0m(1.06)、0.05M(0.59)。我们发现0.03 M的铯是修饰电子传递层最合适的浓度。与未修饰的太阳能电池相比,添加修饰层不影响电子传输层的大小和厚度。光电转换效率也从0.90%提高到1.55%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信