A Data-driven Approach for Fault Detection in the Alternator Unit of Automotive Systems

Arunkumar Vijayan, M. Tahoori, Ewald Kintzli, T. Lohmann, Juergen Hans Handl
{"title":"A Data-driven Approach for Fault Detection in the Alternator Unit of Automotive Systems","authors":"Arunkumar Vijayan, M. Tahoori, Ewald Kintzli, T. Lohmann, Juergen Hans Handl","doi":"10.1109/ETS54262.2022.9810432","DOIUrl":null,"url":null,"abstract":"Functional safety is considered as a prominent dependability attribute in today’s automotive world. It is extremely important to ensure safe operation of different automotive parts. An alternator unit is an electric generator used in modern automobiles to charge the battery and to power the electrical system when its engine is running. Therefore, its correct operation is crucial for the overall automobile safety. In this work, we predict the health of an alternator on-the-fly using machine learning approaches for efficient yet accurate failure detection. We make use of inexpensive time domain features of alternator voltage waveform to achieve 97% prediction accuracy with no false positives. The correctness and usability of the proposed approach has been validated using realistic testing environment.","PeriodicalId":334931,"journal":{"name":"2022 IEEE European Test Symposium (ETS)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE European Test Symposium (ETS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ETS54262.2022.9810432","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Functional safety is considered as a prominent dependability attribute in today’s automotive world. It is extremely important to ensure safe operation of different automotive parts. An alternator unit is an electric generator used in modern automobiles to charge the battery and to power the electrical system when its engine is running. Therefore, its correct operation is crucial for the overall automobile safety. In this work, we predict the health of an alternator on-the-fly using machine learning approaches for efficient yet accurate failure detection. We make use of inexpensive time domain features of alternator voltage waveform to achieve 97% prediction accuracy with no false positives. The correctness and usability of the proposed approach has been validated using realistic testing environment.
汽车系统交流机组故障检测的数据驱动方法
在当今的汽车世界中,功能安全被认为是一个突出的可靠性属性。保证汽车各零部件的安全运行是极其重要的。交流发电机是一种用于现代汽车的发电机,用于给电池充电,并在发动机运转时为电气系统供电。因此,它的正确操作对整个汽车的安全至关重要。在这项工作中,我们使用机器学习方法实时预测交流发电机的健康状况,以实现高效而准确的故障检测。我们利用交流发电机电压波形的时域特征,在无误报的情况下达到97%的预测精度。通过实际的测试环境验证了该方法的正确性和可用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信