Asymmetric classifier based on kernel PLS for imbalanced data

Ying-jun Ma, Bing-Huang Su, Shunzhi Zhu, Wei Weng, Liang Huang, Jianqiang Hu
{"title":"Asymmetric classifier based on kernel PLS for imbalanced data","authors":"Ying-jun Ma, Bing-Huang Su, Shunzhi Zhu, Wei Weng, Liang Huang, Jianqiang Hu","doi":"10.1109/ICCSE.2015.7250294","DOIUrl":null,"url":null,"abstract":"In classification tasks, class imbalance problem has been reported to hinder the performance of some standard classifiers, such as nearest neighbors algorithm. This paper presents an improvement to kernel partial least squares classifier (KPLSC) is proposed to deal with the class imbalance problem. This improvement is applicable to all cases no matter whether the data sets are linearly separable or not. Experiments on datasets from different domains show that the improvement performs well in classification problems.","PeriodicalId":311451,"journal":{"name":"2015 10th International Conference on Computer Science & Education (ICCSE)","volume":"397 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 10th International Conference on Computer Science & Education (ICCSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSE.2015.7250294","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In classification tasks, class imbalance problem has been reported to hinder the performance of some standard classifiers, such as nearest neighbors algorithm. This paper presents an improvement to kernel partial least squares classifier (KPLSC) is proposed to deal with the class imbalance problem. This improvement is applicable to all cases no matter whether the data sets are linearly separable or not. Experiments on datasets from different domains show that the improvement performs well in classification problems.
基于核PLS的非对称数据分类器
在分类任务中,类不平衡问题已经被报道影响了一些标准分类器的性能,例如最近邻算法。针对类不平衡问题,提出了一种改进的核偏最小二乘分类器(KPLSC)。这种改进适用于所有情况,无论数据集是否线性可分。在不同领域的数据集上进行的实验表明,这种改进方法在分类问题上有很好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信