Matching-space Stereo Networks for Cross-domain Generalization

Changjiang Cai, Matteo Poggi, S. Mattoccia, Philippos Mordohai
{"title":"Matching-space Stereo Networks for Cross-domain Generalization","authors":"Changjiang Cai, Matteo Poggi, S. Mattoccia, Philippos Mordohai","doi":"10.1109/3DV50981.2020.00046","DOIUrl":null,"url":null,"abstract":"End-to-end deep networks represent the state of the art for stereo matching. While excelling on images framing environments similar to the training set, major drops in accuracy occur in unseen domains (e.g., when moving from synthetic to real scenes). In this paper we introduce a novel family of architectures, namely Matching-Space Networks (MS-Nets), with improved generalization properties. By replacing learning-based feature extraction from image RGB values with matching functions and confidence measures from conventional wisdom, we move the learning process from the color space to the Matching Space, avoiding over-specialization to domain specific features. Extensive experimental results on four real datasets highlight that our proposal leads to superior generalization to unseen environments over conventional deep architectures, keeping accuracy on the source domain almost unaltered. Our code is available at https://qithub.com/ccj5351/MS-Nets.","PeriodicalId":293399,"journal":{"name":"2020 International Conference on 3D Vision (3DV)","volume":"88 11","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on 3D Vision (3DV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/3DV50981.2020.00046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

Abstract

End-to-end deep networks represent the state of the art for stereo matching. While excelling on images framing environments similar to the training set, major drops in accuracy occur in unseen domains (e.g., when moving from synthetic to real scenes). In this paper we introduce a novel family of architectures, namely Matching-Space Networks (MS-Nets), with improved generalization properties. By replacing learning-based feature extraction from image RGB values with matching functions and confidence measures from conventional wisdom, we move the learning process from the color space to the Matching Space, avoiding over-specialization to domain specific features. Extensive experimental results on four real datasets highlight that our proposal leads to superior generalization to unseen environments over conventional deep architectures, keeping accuracy on the source domain almost unaltered. Our code is available at https://qithub.com/ccj5351/MS-Nets.
跨域泛化的匹配空间立体网络
端到端深度网络代表了立体匹配的最新技术。虽然在与训练集相似的图像框架环境中表现出色,但准确率的主要下降发生在看不见的领域(例如,当从合成场景移动到真实场景时)。在本文中,我们介绍了一种新的体系结构,即匹配空间网络(MS-Nets),具有改进的泛化特性。通过用传统智慧中的匹配函数和置信度度量取代基于学习的图像RGB值特征提取,我们将学习过程从颜色空间转移到匹配空间,避免过度专门化到特定领域的特征。在四个真实数据集上的大量实验结果表明,我们的建议比传统的深度架构对看不见的环境有更好的泛化,保持源域的准确性几乎不变。我们的代码可在https://qithub.com/ccj5351/MS-Nets上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信