Jetina J. Tsvaki, Dmitry Tailakov, Evgeny Nikolaevich Pavlovskiy
{"title":"Development of water flood model for oil production enhancement","authors":"Jetina J. Tsvaki, Dmitry Tailakov, Evgeny Nikolaevich Pavlovskiy","doi":"10.1109/S.A.I.ence50533.2020.9303200","DOIUrl":null,"url":null,"abstract":"Main goal of any industry is to increase productivity which in oil and gas field is to increase reservoir oil asset by producing oil in an effective and economically efficient manner. The objective of the study is to develop a water flood model for oil production enhancement using artificial neural networks and provide a model that maximizes oil production for a given water injection that in turn will extend mature fields life and decrease operational costs. Using the data comprising of daily water injection rates, oil production rates, water production, and gas production from the year 2004 to 2016 for 577 injection wells, 1344 production wells, and 36 events which had occurred during the course. Comparative analysis on the deep neural models such as Multi-Layer Perception, Convolutional Neural Networks, Long Short-Term Memory, and Gated Recurrent Neural Networks are used, and Gated Recurrent Neural Networks outperformed them. To minimize the loss and improve the performance of the water flood model tabular data mix-up was adopted on all the models above. The results showed that the data mixed up Gated Recurrent Neural Network outperformed all the other models. To maximize the oil production Nelder-Mead optimization method was adopted to find appropriate water injection rates. A simple two-layered multi-layer perceptron was used in modeling the nonlinear relationship between water injection and oil production to avoid function complexity.","PeriodicalId":201402,"journal":{"name":"2020 Science and Artificial Intelligence conference (S.A.I.ence)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Science and Artificial Intelligence conference (S.A.I.ence)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/S.A.I.ence50533.2020.9303200","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Main goal of any industry is to increase productivity which in oil and gas field is to increase reservoir oil asset by producing oil in an effective and economically efficient manner. The objective of the study is to develop a water flood model for oil production enhancement using artificial neural networks and provide a model that maximizes oil production for a given water injection that in turn will extend mature fields life and decrease operational costs. Using the data comprising of daily water injection rates, oil production rates, water production, and gas production from the year 2004 to 2016 for 577 injection wells, 1344 production wells, and 36 events which had occurred during the course. Comparative analysis on the deep neural models such as Multi-Layer Perception, Convolutional Neural Networks, Long Short-Term Memory, and Gated Recurrent Neural Networks are used, and Gated Recurrent Neural Networks outperformed them. To minimize the loss and improve the performance of the water flood model tabular data mix-up was adopted on all the models above. The results showed that the data mixed up Gated Recurrent Neural Network outperformed all the other models. To maximize the oil production Nelder-Mead optimization method was adopted to find appropriate water injection rates. A simple two-layered multi-layer perceptron was used in modeling the nonlinear relationship between water injection and oil production to avoid function complexity.