Switching between multiple performance criteria to improve performance

Koshy George, Sachin Prabhu, Shashank Suryanarayanan, Tejas Bettadapura, Nagesh
{"title":"Switching between multiple performance criteria to improve performance","authors":"Koshy George, Sachin Prabhu, Shashank Suryanarayanan, Tejas Bettadapura, Nagesh","doi":"10.1109/CCSII.2012.6470464","DOIUrl":null,"url":null,"abstract":"A fundamental issue in model predictive control is the choice of the prediction and/or control horizon. Prior knowledge is often required. The transient performance is dependent on this choice. Moreover, a single choice is perhaps not the best option at all time instants. In this paper, we resolve the issue by introducing the novel idea of multiple performance criteria with switching. This method chooses automatically at every instant the best prediction and control horizon resulting in an improved transient response. The technique is then applied to the Shell benchmark control problem. We demonstrate that the tracking error is considerably reduced with lesser settling times.","PeriodicalId":389895,"journal":{"name":"2012 IEEE Conference on Control, Systems & Industrial Informatics","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Conference on Control, Systems & Industrial Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCSII.2012.6470464","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

A fundamental issue in model predictive control is the choice of the prediction and/or control horizon. Prior knowledge is often required. The transient performance is dependent on this choice. Moreover, a single choice is perhaps not the best option at all time instants. In this paper, we resolve the issue by introducing the novel idea of multiple performance criteria with switching. This method chooses automatically at every instant the best prediction and control horizon resulting in an improved transient response. The technique is then applied to the Shell benchmark control problem. We demonstrate that the tracking error is considerably reduced with lesser settling times.
在多个性能标准之间切换以提高性能
模型预测控制的一个基本问题是预测和/或控制水平的选择。通常需要先验知识。瞬态性能取决于这个选择。此外,单一的选择可能不是在任何时候都是最好的选择。在本文中,我们通过引入具有切换的多性能标准的新思想来解决这个问题。该方法在每一时刻自动选择最佳的预测和控制水平,从而改善了暂态响应。然后将该技术应用于壳牌基准控制问题。我们证明,跟踪误差大大减少与较短的沉淀时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信