Centers and Limit Cycles of Generalized Kukles Polynomial Differential Systems: Phase Portraits and Limit Cycles

Ahlam Belfar, R. Benterki
{"title":"Centers and Limit Cycles of Generalized Kukles Polynomial Differential Systems: Phase Portraits and Limit Cycles","authors":"Ahlam Belfar, R. Benterki","doi":"10.17516/1997-1397-2020-13-4-387-397","DOIUrl":null,"url":null,"abstract":"Abstract. In this work, we give the seven global phase portraits in the Poincaré disc of the Kukles differential system given by ẋ = −y, ẏ = x+ ax + bxy + cy, where x, y ∈ R and a, b, c ∈ R with a + b + c ̸= 0. Moreover, we perturb these system inside all classes of polynomials of eight degrees, then we use the averaging theory up sixth order to study the number of limit cycles which can bifurcate from the origin of coordinates of the Kukles differential system.","PeriodicalId":422202,"journal":{"name":"Journal of Siberian Federal University. Mathematics and Physics","volume":"530 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Siberian Federal University. Mathematics and Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17516/1997-1397-2020-13-4-387-397","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract. In this work, we give the seven global phase portraits in the Poincaré disc of the Kukles differential system given by ẋ = −y, ẏ = x+ ax + bxy + cy, where x, y ∈ R and a, b, c ∈ R with a + b + c ̸= 0. Moreover, we perturb these system inside all classes of polynomials of eight degrees, then we use the averaging theory up sixth order to study the number of limit cycles which can bifurcate from the origin of coordinates of the Kukles differential system.
广义Kukles多项式微分系统的中心与极限环:相肖像与极限环
摘要在本文中,我们给出了Kukles微分系统的poincar盘中的7个全局相位图,其中,x, y∈R, a, b, c∈R,且a + b + c = 0。此外,我们将这些系统在所有的八阶多项式中进行扰动,然后我们使用六阶平均理论来研究库克尔斯微分系统的极限环的数量,这些极限环可以从坐标的原点分叉。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信