Dynamic Characteristics Analysis of Flexible Rotor System With Pedestal Looseness

Jie Hong, Qiyao Dai, Fayong Wu, Yanhong Ma
{"title":"Dynamic Characteristics Analysis of Flexible Rotor System With Pedestal Looseness","authors":"Jie Hong, Qiyao Dai, Fayong Wu, Yanhong Ma","doi":"10.1115/gt2021-60195","DOIUrl":null,"url":null,"abstract":"\n Due to the limitation of assembly conditions and working load environment, the design of pedestal looseness is often used in the structural design of aeroengine multi support flexible rotor, which affects the vibration response and stability of the rotor system. In this paper, a dynamic model of a flexible rotor system with pedestal looseness is established for a practical aeroengine flexible rotor system. Next, a nonlinear modal analysis process for the multi degree of freedom nonlinear rotor system is proposed. Based on this, the nonlinear modal characteristics of the flexible rotor system with pedestal looseness are analyzed. An interval prediction method of modal damping interval for stability analysis of rotor system is presented, and the influence of key characteristic parameters on modal damping and vibration stability of rotor system is explored. Finally, the vibration characteristics of the rotor system are obtained by numerical integration method. The results show that the modal characteristics of the rotor vary with the amplitude of the rotor, and have the feature of interval distribution; vibration stability mainly depends on tangential friction and additional lateral constraint; when the amplitude of the rotor is large, the backward whirling motion may occur and the vibration may be unstable. This paper will provide a theoretical method for dynamic optimization of multi support flexible rotor system, which is helpful to ensure the reliability and safety design of aeroengine.","PeriodicalId":143309,"journal":{"name":"Volume 9B: Structures and Dynamics — Fatigue, Fracture, and Life Prediction; Probabilistic Methods; Rotordynamics; Structural Mechanics and Vibration","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 9B: Structures and Dynamics — Fatigue, Fracture, and Life Prediction; Probabilistic Methods; Rotordynamics; Structural Mechanics and Vibration","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/gt2021-60195","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Due to the limitation of assembly conditions and working load environment, the design of pedestal looseness is often used in the structural design of aeroengine multi support flexible rotor, which affects the vibration response and stability of the rotor system. In this paper, a dynamic model of a flexible rotor system with pedestal looseness is established for a practical aeroengine flexible rotor system. Next, a nonlinear modal analysis process for the multi degree of freedom nonlinear rotor system is proposed. Based on this, the nonlinear modal characteristics of the flexible rotor system with pedestal looseness are analyzed. An interval prediction method of modal damping interval for stability analysis of rotor system is presented, and the influence of key characteristic parameters on modal damping and vibration stability of rotor system is explored. Finally, the vibration characteristics of the rotor system are obtained by numerical integration method. The results show that the modal characteristics of the rotor vary with the amplitude of the rotor, and have the feature of interval distribution; vibration stability mainly depends on tangential friction and additional lateral constraint; when the amplitude of the rotor is large, the backward whirling motion may occur and the vibration may be unstable. This paper will provide a theoretical method for dynamic optimization of multi support flexible rotor system, which is helpful to ensure the reliability and safety design of aeroengine.
考虑基座松动的柔性转子系统动态特性分析
在航空发动机多支承柔性转子的结构设计中,由于装配条件和工作载荷环境的限制,常采用基座松动设计,影响转子系统的振动响应和稳定性。针对实际的航空发动机柔性旋翼系统,建立了考虑基座松动的柔性旋翼系统动力学模型。其次,提出了一种多自由度非线性转子系统的非线性模态分析方法。在此基础上,分析了具有基座松动的柔性转子系统的非线性模态特性。提出了一种用于转子系统稳定性分析的模态阻尼区间预测方法,探讨了关键特性参数对转子系统模态阻尼和振动稳定性的影响。最后,采用数值积分法得到了转子系统的振动特性。结果表明:转子模态特性随转子幅值的变化而变化,且具有区间分布特征;振动稳定性主要取决于切向摩擦和附加的侧向约束;当转子幅值较大时,可能发生反向旋转运动,振动不稳定。本文将为多支承柔性转子系统的动态优化提供一种理论方法,有助于保证航空发动机的可靠性和安全性设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信