A Comparative Study of Velocity Obstacle Approaches for Multi-Agent Systems

James A. Douthwaite, Shiyu Zhao, L. Mihaylova
{"title":"A Comparative Study of Velocity Obstacle Approaches for Multi-Agent Systems","authors":"James A. Douthwaite, Shiyu Zhao, L. Mihaylova","doi":"10.1109/CONTROL.2018.8516848","DOIUrl":null,"url":null,"abstract":"This paper presents a critical analysis of some of the most promising approaches aimed at geometrically generating reactive avoidance trajectories for multi-agent systems. Several evaluation scenarios are proposed that include both sensor uncertainty and increasing difficulty. An intensive 1000 cycle Monte Carlo analysis is used to assess the performance of the selected algorithms under the presented conditions. The Optimal Reciprocal Collision Avoidance (ORCA) method was shown to demonstrate the most scalable computation times and collision likelihood in the presented scenarios. The respective features and limitations of the algorithms are discussed and presented through examples.","PeriodicalId":266112,"journal":{"name":"2018 UKACC 12th International Conference on Control (CONTROL)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 UKACC 12th International Conference on Control (CONTROL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CONTROL.2018.8516848","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

This paper presents a critical analysis of some of the most promising approaches aimed at geometrically generating reactive avoidance trajectories for multi-agent systems. Several evaluation scenarios are proposed that include both sensor uncertainty and increasing difficulty. An intensive 1000 cycle Monte Carlo analysis is used to assess the performance of the selected algorithms under the presented conditions. The Optimal Reciprocal Collision Avoidance (ORCA) method was shown to demonstrate the most scalable computation times and collision likelihood in the presented scenarios. The respective features and limitations of the algorithms are discussed and presented through examples.
多智能体系统速度障碍方法的比较研究
本文对一些最有前途的方法进行了批判性分析,这些方法旨在为多智能体系统以几何方式生成反应性回避轨迹。提出了几种评估方案,包括传感器的不确定性和难度的增加。一个密集的1000周期蒙特卡罗分析被用来评估所选算法的性能在给定的条件下。最优互反碰撞避免(ORCA)方法在给定的场景中展示了最可扩展的计算时间和碰撞可能性。通过实例讨论了这些算法各自的特点和局限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信