Algorithms for Weighted Independent Transversals and Strong Colouring

Alessandra Graf, David G. Harris, P. Haxell
{"title":"Algorithms for Weighted Independent Transversals and Strong Colouring","authors":"Alessandra Graf, David G. Harris, P. Haxell","doi":"10.1145/3474057","DOIUrl":null,"url":null,"abstract":"An independent transversal (IT) in a graph with a given vertex partition is an independent set consisting of one vertex in each partition class. Several sufficient conditions are known for the existence of an IT in a given graph and vertex partition, which have been used over the years to solve many combinatorial problems. Some of these IT existence theorems have algorithmic proofs, but there remains a gap between the best existential bounds and the bounds obtainable by efficient algorithms. Recently, Graf and Haxell (2018) described a new (deterministic) algorithm that asymptotically closes this gap, but there are limitations on its applicability. In this article, we develop a randomized algorithm that is much more widely applicable, and demonstrate its use by giving efficient algorithms for two problems concerning the strong chromatic number of graphs.","PeriodicalId":154047,"journal":{"name":"ACM Transactions on Algorithms (TALG)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Algorithms (TALG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3474057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

An independent transversal (IT) in a graph with a given vertex partition is an independent set consisting of one vertex in each partition class. Several sufficient conditions are known for the existence of an IT in a given graph and vertex partition, which have been used over the years to solve many combinatorial problems. Some of these IT existence theorems have algorithmic proofs, but there remains a gap between the best existential bounds and the bounds obtainable by efficient algorithms. Recently, Graf and Haxell (2018) described a new (deterministic) algorithm that asymptotically closes this gap, but there are limitations on its applicability. In this article, we develop a randomized algorithm that is much more widely applicable, and demonstrate its use by giving efficient algorithms for two problems concerning the strong chromatic number of graphs.
加权独立截线和强着色算法
具有给定顶点划分的图中的独立截线(IT)是由每个划分类中的一个顶点组成的独立集合。已知在给定的图和顶点划分中存在IT的几个充分条件,这些条件多年来已被用于解决许多组合问题。这些IT存在性定理中的一些有算法证明,但在最佳存在界和有效算法可获得的界之间仍然存在差距。最近,Graf和Haxell(2018)描述了一种新的(确定性)算法,该算法可以渐进地缩小这一差距,但其适用性存在局限性。在本文中,我们开发了一种更广泛适用的随机算法,并通过给出关于图的强色数的两个问题的有效算法来证明它的使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信