BURST

M. Acher, Gilles Perrouin, Maxime Cordy
{"title":"BURST","authors":"M. Acher, Gilles Perrouin, Maxime Cordy","doi":"10.1145/3461002.3473070","DOIUrl":null,"url":null,"abstract":"We present BURST, a benchmarking platform for uniform random sampling techniques. With BURST, researchers have a flexible, controlled environment in which they can evaluate the scalability and uniformity of their sampling. BURST comes with an extensive --- and extensible --- benchmark dataset comprising 128 feature models, including challenging, real-world models of the Linux kernel. BURST takes as inputs a sampling tool, a set of feature models and a sampling budget. It automatically translates any feature model of the set in DIMACS and invokes the sampling tool to generate the budgeted number of samples. To evaluate the scalability of the sampling tool, BURST measures the time the tool needs to produce the requested sample. To evaluate the uniformity of the produced sample, BURST integrates the state-of-the-art and proven statistical test Barbarik. We envision BURST to become the starting point of a standardisation initiative of sampling tool evaluation. Given the huge interest of research for sampling algorithms and tools, this initiative would have the potential to reach and crosscut multiple research communities including AI, ML, SAT and SPL.","PeriodicalId":416819,"journal":{"name":"Proceedings of the 25th ACM International Systems and Software Product Line Conference - Volume B","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 25th ACM International Systems and Software Product Line Conference - Volume B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3461002.3473070","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

We present BURST, a benchmarking platform for uniform random sampling techniques. With BURST, researchers have a flexible, controlled environment in which they can evaluate the scalability and uniformity of their sampling. BURST comes with an extensive --- and extensible --- benchmark dataset comprising 128 feature models, including challenging, real-world models of the Linux kernel. BURST takes as inputs a sampling tool, a set of feature models and a sampling budget. It automatically translates any feature model of the set in DIMACS and invokes the sampling tool to generate the budgeted number of samples. To evaluate the scalability of the sampling tool, BURST measures the time the tool needs to produce the requested sample. To evaluate the uniformity of the produced sample, BURST integrates the state-of-the-art and proven statistical test Barbarik. We envision BURST to become the starting point of a standardisation initiative of sampling tool evaluation. Given the huge interest of research for sampling algorithms and tools, this initiative would have the potential to reach and crosscut multiple research communities including AI, ML, SAT and SPL.
破裂
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信