Regge-Wheeler Type Equations

S. Klainerman, J. Szeftel
{"title":"Regge-Wheeler Type Equations","authors":"S. Klainerman, J. Szeftel","doi":"10.2307/j.ctv15r57cw.14","DOIUrl":null,"url":null,"abstract":"This chapter explores estimates for Regge-Wheeler type wave equations used in Theorem M1. It first proves basic Morawetz estimates for ψ‎. The chapter then proves rp-weighted estimates in the spirit of Dafermos and Rodnianski for ψ‎. In particular, it obtains as an immediate corollary the proof of Theorem 5.17 in the case s = 0 (i.e., without commutating the equation of ψ‎ with derivatives). It also uses a variation of the method of [5] to derive slightly stronger weighted estimates and prove Theorem 5.18 in the case s = 0. Finally, commuting the equation of ψ‎ with derivatives, the chapter completes the proof of Theorem 5.17 by controlling higher order derivatives of ψ‎.","PeriodicalId":371134,"journal":{"name":"Global Nonlinear Stability of Schwarzschild Spacetime under Polarized Perturbations","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Nonlinear Stability of Schwarzschild Spacetime under Polarized Perturbations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2307/j.ctv15r57cw.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This chapter explores estimates for Regge-Wheeler type wave equations used in Theorem M1. It first proves basic Morawetz estimates for ψ‎. The chapter then proves rp-weighted estimates in the spirit of Dafermos and Rodnianski for ψ‎. In particular, it obtains as an immediate corollary the proof of Theorem 5.17 in the case s = 0 (i.e., without commutating the equation of ψ‎ with derivatives). It also uses a variation of the method of [5] to derive slightly stronger weighted estimates and prove Theorem 5.18 in the case s = 0. Finally, commuting the equation of ψ‎ with derivatives, the chapter completes the proof of Theorem 5.17 by controlling higher order derivatives of ψ‎.
Regge-Wheeler型方程
本章探讨定理M1中使用的Regge-Wheeler型波动方程的估计。它首先证明了ψ的基本Morawetz估计。然后,本章以Dafermos和Rodnianski的精神证明了ψ的rp加权估计。特别地,它得到定理5.17在s = 0的情况下的直接推论(即,不将ψ′的方程与导数交换)。它还使用了[5]方法的一种变体来推导略强的加权估计,并在s = 0的情况下证明定理5.18。最后,将ψ′的方程与导数交换,通过控制ψ′的高阶导数完成定理5.17的证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信