Functional Distances for Genes Based on GO Feature Maps and their Application to Clustering

N. Speer, H. Fröhlich, C. Spieth, A. Zell
{"title":"Functional Distances for Genes Based on GO Feature Maps and their Application to Clustering","authors":"N. Speer, H. Fröhlich, C. Spieth, A. Zell","doi":"10.1109/CIBCB.2005.1594910","DOIUrl":null,"url":null,"abstract":"With the invention of high throughput methods, researchers are capable of producing large amounts of biological data. During the analysis of such data, the need for a functional grouping of genes arises. In this paper, we propose a new functional distance measure for genes and its application to clustering. The proposed distance is based on the concept of empirical feature maps that are built using the Gene Ontology. Besides, our distance function can be calculated much faster than a previous approach. Finally, we show that using this distance function for clustering produces clusters of genes that are of the same quality as in our previous publication. Therefore, it promises to speed up biological data analysis.","PeriodicalId":330810,"journal":{"name":"2005 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIBCB.2005.1594910","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

With the invention of high throughput methods, researchers are capable of producing large amounts of biological data. During the analysis of such data, the need for a functional grouping of genes arises. In this paper, we propose a new functional distance measure for genes and its application to clustering. The proposed distance is based on the concept of empirical feature maps that are built using the Gene Ontology. Besides, our distance function can be calculated much faster than a previous approach. Finally, we show that using this distance function for clustering produces clusters of genes that are of the same quality as in our previous publication. Therefore, it promises to speed up biological data analysis.
基于GO特征映射的基因功能距离及其聚类应用
随着高通量方法的发明,研究人员能够产生大量的生物数据。在分析这些数据的过程中,需要对基因进行功能分组。本文提出了一种新的基因功能距离测度及其在聚类中的应用。所提出的距离是基于使用基因本体构建的经验特征映射的概念。此外,我们的距离函数的计算速度比以前的方法快得多。最后,我们表明,使用这个距离函数进行聚类产生的基因簇的质量与我们之前的出版物相同。因此,它有望加快生物数据分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信