Semi-supervised Document Clustering via Active Learning with Pairwise Constraints

Ruizhang Huang, Wai Lam
{"title":"Semi-supervised Document Clustering via Active Learning with Pairwise Constraints","authors":"Ruizhang Huang, Wai Lam","doi":"10.1109/ICDM.2007.79","DOIUrl":null,"url":null,"abstract":"This paper investigates a framework that discovers pair-wise constraints for semi-supervised text document clustering. An active learning approach is proposed to select informative document pairs for obtaining user feedbacks. A gain directed document pair selection method that measures how much we can learn by revealing the relationships between pairs of documents is designed. Three different models, namely, uncertainty model, generation error model, and objective function model are proposed. Language modeling is investigated for representing clusters in the semi-supervised document clustering approach.","PeriodicalId":233758,"journal":{"name":"Seventh IEEE International Conference on Data Mining (ICDM 2007)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seventh IEEE International Conference on Data Mining (ICDM 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2007.79","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31

Abstract

This paper investigates a framework that discovers pair-wise constraints for semi-supervised text document clustering. An active learning approach is proposed to select informative document pairs for obtaining user feedbacks. A gain directed document pair selection method that measures how much we can learn by revealing the relationships between pairs of documents is designed. Three different models, namely, uncertainty model, generation error model, and objective function model are proposed. Language modeling is investigated for representing clusters in the semi-supervised document clustering approach.
基于两两约束主动学习的半监督文档聚类
本文研究了一种用于发现半监督文本文档聚类的成对约束的框架。提出了一种主动学习的方法来选择信息丰富的文档对以获取用户反馈。设计了一种增益导向文档对选择方法,该方法通过揭示文档对之间的关系来度量我们可以学习多少内容。提出了三种不同的模型:不确定性模型、生成误差模型和目标函数模型。研究了半监督文档聚类方法中表示聚类的语言建模方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信