Modeling spatial layout of features for real world scenario RGB-D action recognition

Michal Koperski, F. Brémond
{"title":"Modeling spatial layout of features for real world scenario RGB-D action recognition","authors":"Michal Koperski, F. Brémond","doi":"10.1109/AVSS.2016.7738023","DOIUrl":null,"url":null,"abstract":"Depth information improves skeleton detection, thus skeleton based methods are the most popular methods in RGB-D action recognition. But skeleton detection working range is limited in terms of distance and view-point. Most of the skeleton based action recognition methods ignore fact that skeleton may be missing. Local points-of-interest (POIs) do not require skeleton detection. But they fail if they cannot detect enough POIs e.g. amount of motion in action is low. Most of them ignore spatial-location of features. We cope with the above problems by employing people detector instead of skeleton detector. We propose method to encode spatial-layout of features inside bounding box. We also introduce descriptor which encodes static information for actions with low amount of motion. We validate our approach on: 3 public data-sets. The results show that our method is competitive to skeleton based methods, while requiring much simpler people detection instead of skeleton detection.","PeriodicalId":438290,"journal":{"name":"2016 13th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS)","volume":"193 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 13th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AVSS.2016.7738023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

Depth information improves skeleton detection, thus skeleton based methods are the most popular methods in RGB-D action recognition. But skeleton detection working range is limited in terms of distance and view-point. Most of the skeleton based action recognition methods ignore fact that skeleton may be missing. Local points-of-interest (POIs) do not require skeleton detection. But they fail if they cannot detect enough POIs e.g. amount of motion in action is low. Most of them ignore spatial-location of features. We cope with the above problems by employing people detector instead of skeleton detector. We propose method to encode spatial-layout of features inside bounding box. We also introduce descriptor which encodes static information for actions with low amount of motion. We validate our approach on: 3 public data-sets. The results show that our method is competitive to skeleton based methods, while requiring much simpler people detection instead of skeleton detection.
真实场景RGB-D动作识别特征空间布局建模
深度信息改进了骨骼检测,因此基于骨骼的方法是RGB-D动作识别中最常用的方法。但是骨骼检测的工作范围受到距离和视点的限制。大多数基于骨架的动作识别方法都忽略了骨架可能缺失的事实。局部兴趣点(poi)不需要骨架检测。但如果它们不能检测到足够的poi,例如动作中的运动量很低,它们就会失败。它们大多忽略了特征的空间定位。为了解决以上问题,我们采用了人体探测器而不是骨骼探测器。提出了对边界框内特征的空间布局进行编码的方法。我们还引入了描述符,对低运动量动作的静态信息进行编码。我们在3个公共数据集上验证了我们的方法。结果表明,该方法与基于骨架的方法相比具有一定的竞争力,但需要更简单的人物检测而不是骨架检测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信