Subscriber Location in 5G mmWave Networks - Machine Learning RF Pattern Matching

Játiva E. René, A. Salazar, Katty Beltrán, Oliver Caisaluisa
{"title":"Subscriber Location in 5G mmWave Networks - Machine Learning RF Pattern Matching","authors":"Játiva E. René, A. Salazar, Katty Beltrán, Oliver Caisaluisa","doi":"10.1109/ROPEC55836.2022.10018626","DOIUrl":null,"url":null,"abstract":"A realistic simulated 5G DM-MIMO wireless network operating at 28 GHz mmWaves has been deployed using Open Street Maps and Matlab® over the campus of Universidad San Francisco de Quito (USFQ). Received Signal Strength fingerprints have been collected at Base Station antenna array, and the K-Nearest Neighbors method has been used to perform the match between the received RF patterns and the stored fingerprints. Three different procedures were tested and their results were compared, exhibiting very good outcomes in all the cases.","PeriodicalId":237392,"journal":{"name":"2022 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC)","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROPEC55836.2022.10018626","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

A realistic simulated 5G DM-MIMO wireless network operating at 28 GHz mmWaves has been deployed using Open Street Maps and Matlab® over the campus of Universidad San Francisco de Quito (USFQ). Received Signal Strength fingerprints have been collected at Base Station antenna array, and the K-Nearest Neighbors method has been used to perform the match between the received RF patterns and the stored fingerprints. Three different procedures were tested and their results were compared, exhibiting very good outcomes in all the cases.
5G毫米波网络中的用户位置——机器学习射频模式匹配
使用Open Street Maps和Matlab®在基多旧金山大学(USFQ)校园内部署了一个以28 GHz毫米波工作的逼真模拟5G DM-MIMO无线网络。在基站天线阵列采集接收到的信号强度指纹,利用k近邻法对接收到的射频模式与存储的指纹进行匹配。我们测试了三种不同的方法并比较了它们的结果,所有的病例都显示出非常好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信