S. M. Abdur Razzak, Y. Namihira, M.A.G. Khan, F. Begum, S. Kaijage
{"title":"Chromatic Dispersion Properties of A Decagonal Photonic Crystal Fiber","authors":"S. M. Abdur Razzak, Y. Namihira, M.A.G. Khan, F. Begum, S. Kaijage","doi":"10.1109/ICICT.2007.375365","DOIUrl":null,"url":null,"abstract":"This paper presents dispersion characteristics of a decagonal photonic crystal fiber (D-PCF) for the first time. The finite difference method (FDM) with an anisotropic perfectly matched boundary layer (PML) is used to investigate the chromatic dispersion characteristics. It is shown through numerical simulation results that D-PCFs can be used as a dispersion compensating fiber for their high negative dispersion slope characteristic. The dependency of chromatic dispersion with pitch, wavelength and air-hole diameters are also presented. Moreover, dispersion properties of D-PCF have been compared with that of the octagonal PCF (O-PCF) and hexagonal PCF (H-PCF), respectively.","PeriodicalId":206443,"journal":{"name":"2007 International Conference on Information and Communication Technology","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 International Conference on Information and Communication Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICT.2007.375365","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
This paper presents dispersion characteristics of a decagonal photonic crystal fiber (D-PCF) for the first time. The finite difference method (FDM) with an anisotropic perfectly matched boundary layer (PML) is used to investigate the chromatic dispersion characteristics. It is shown through numerical simulation results that D-PCFs can be used as a dispersion compensating fiber for their high negative dispersion slope characteristic. The dependency of chromatic dispersion with pitch, wavelength and air-hole diameters are also presented. Moreover, dispersion properties of D-PCF have been compared with that of the octagonal PCF (O-PCF) and hexagonal PCF (H-PCF), respectively.