{"title":"Permutation Entropy: A new feature for Brain-Computer Interfaces","authors":"N. Nicolaou, J. Georgiou","doi":"10.1109/BIOCAS.2010.5709568","DOIUrl":null,"url":null,"abstract":"This paper investigates the use of Permutation Entropy (PE) as a feature for mental task classification for a Brain-Computer Interface system. PE is a recently introduced measure which quantifies signal complexity by measuring the departure of a time series from a random one. More regular signals are characterized by lower PE values. Here, PE is utilized to characterize signals from electroencephalograms of 3 subjects performing 4 motor imagery tasks, which are then classified using a Support Vector Machine. Even though it is possible to obtain 100% single-trial classification accuracy, this is very much subject-dependent.","PeriodicalId":440499,"journal":{"name":"2010 Biomedical Circuits and Systems Conference (BioCAS)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Biomedical Circuits and Systems Conference (BioCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIOCAS.2010.5709568","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
This paper investigates the use of Permutation Entropy (PE) as a feature for mental task classification for a Brain-Computer Interface system. PE is a recently introduced measure which quantifies signal complexity by measuring the departure of a time series from a random one. More regular signals are characterized by lower PE values. Here, PE is utilized to characterize signals from electroencephalograms of 3 subjects performing 4 motor imagery tasks, which are then classified using a Support Vector Machine. Even though it is possible to obtain 100% single-trial classification accuracy, this is very much subject-dependent.