Applying question classification to Yahoo! Answers

Mohan John Blooma, D. Goh, A. Chua, Zhiquan Ling
{"title":"Applying question classification to Yahoo! Answers","authors":"Mohan John Blooma, D. Goh, A. Chua, Zhiquan Ling","doi":"10.1109/ICADIWT.2008.4664350","DOIUrl":null,"url":null,"abstract":"Question classification is an important part in modern Question Answering systems. Most approaches to question classification are based on handcrafted rules. Recent studies classify simple questions using machine learning techniques and recommends SVM as on of the best performing classifiers. This study applies a hierarchical classifier based on the SVM machine learning algorithm on questions posed by users, drawn from Yahoo! Answers. The significance of this study is that we attempted to directly classify complex questions with multiple sentence questions posed by real users. We report the accuracy achieved using both a coarse-grained classifier and fine-grained classifier to illustrate the effectiveness of our approach on complex questions. We also present a confusion matrix to analyze the results made by our classifier.","PeriodicalId":189871,"journal":{"name":"2008 First International Conference on the Applications of Digital Information and Web Technologies (ICADIWT)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 First International Conference on the Applications of Digital Information and Web Technologies (ICADIWT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICADIWT.2008.4664350","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Question classification is an important part in modern Question Answering systems. Most approaches to question classification are based on handcrafted rules. Recent studies classify simple questions using machine learning techniques and recommends SVM as on of the best performing classifiers. This study applies a hierarchical classifier based on the SVM machine learning algorithm on questions posed by users, drawn from Yahoo! Answers. The significance of this study is that we attempted to directly classify complex questions with multiple sentence questions posed by real users. We report the accuracy achieved using both a coarse-grained classifier and fine-grained classifier to illustrate the effectiveness of our approach on complex questions. We also present a confusion matrix to analyze the results made by our classifier.
将问题分类应用于Yahoo!答案
问题分类是现代问答系统的重要组成部分。大多数问题分类方法都是基于手工制定的规则。最近的研究使用机器学习技术对简单问题进行分类,并推荐SVM作为性能最好的分类器之一。本研究将基于SVM机器学习算法的分层分类器应用于用户提出的问题,该问题来自Yahoo!的答案。本研究的意义在于,我们尝试将复杂问题与真实用户提出的多句问题直接分类。我们报告了使用粗粒度分类器和细粒度分类器实现的准确性,以说明我们的方法在复杂问题上的有效性。我们还提出了一个混淆矩阵来分析我们的分类器所得到的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信