Tuning a Finite Difference Computation for Parallel Vector Processors

G. Zumbusch
{"title":"Tuning a Finite Difference Computation for Parallel Vector Processors","authors":"G. Zumbusch","doi":"10.1109/ISPDC.2012.17","DOIUrl":null,"url":null,"abstract":"Current CPU and GPU architectures heavily use data and instruction parallelism at different levels. Floating point operations are organised in vector instructions of increasing vector length. For reasons of performance it is mandatory to use the vector instructions efficiently. Several ways of tuning a model problem finite difference stencil computation are discussed. The combination of vectorisation and an interleaved data layout, cache aware algorithms, loop unrolling, parallelisation and parameter tuning lead to optimised implementations at a level of 90% peak performance of the floating point pipelines on recent Intel Sandy Bridge and AMD Bulldozer CPU cores, both with AVX vector instructions as well as on Nvidia Fermi/ Kepler GPU architectures. Furthermore, we present numbers for parallel multi-core/ multi-processor and multi-GPU configurations. They represent regularly more than an order of speed up compared to a standard implementation. The analysis may also explain deficiencies of automatic vectorisation for linear data layout and serve as a foundation of efficient implementations of more complex expressions.","PeriodicalId":287900,"journal":{"name":"2012 11th International Symposium on Parallel and Distributed Computing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 11th International Symposium on Parallel and Distributed Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPDC.2012.17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Current CPU and GPU architectures heavily use data and instruction parallelism at different levels. Floating point operations are organised in vector instructions of increasing vector length. For reasons of performance it is mandatory to use the vector instructions efficiently. Several ways of tuning a model problem finite difference stencil computation are discussed. The combination of vectorisation and an interleaved data layout, cache aware algorithms, loop unrolling, parallelisation and parameter tuning lead to optimised implementations at a level of 90% peak performance of the floating point pipelines on recent Intel Sandy Bridge and AMD Bulldozer CPU cores, both with AVX vector instructions as well as on Nvidia Fermi/ Kepler GPU architectures. Furthermore, we present numbers for parallel multi-core/ multi-processor and multi-GPU configurations. They represent regularly more than an order of speed up compared to a standard implementation. The analysis may also explain deficiencies of automatic vectorisation for linear data layout and serve as a foundation of efficient implementations of more complex expressions.
调优并行向量处理器的有限差分计算
当前的CPU和GPU架构在不同级别上大量使用数据和指令并行性。浮点运算是用增加向量长度的向量指令来组织的。出于性能的考虑,必须有效地使用矢量指令。讨论了有限差分模板计算模型问题的几种优化方法。矢量化和交错数据布局、缓存感知算法、循环展开、并行化和参数调优的结合,在最近的英特尔Sandy Bridge和AMD推土机CPU内核上优化了浮点管道90%的峰值性能,这两种CPU都使用AVX矢量指令以及Nvidia Fermi/ Kepler GPU架构。此外,我们还提供了并行多核/多处理器和多gpu配置的数字。与标准实现相比,它们通常表示超过一个数量级的速度提升。该分析还可以解释线性数据布局的自动向量化的不足,并作为更复杂表达式的有效实现的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信