Wenyan Wang, Chao Zhang, Zhitian Zhang, Yan Liu, G. Feng, Ji Wang
{"title":"Investigation of pseudo-Lateral-Field-Excitation in (yxl)-16.5° LiTaO3","authors":"Wenyan Wang, Chao Zhang, Zhitian Zhang, Yan Liu, G. Feng, Ji Wang","doi":"10.1109/FREQ.2008.4622975","DOIUrl":null,"url":null,"abstract":"In the present study, the LFE (lateral field excitation) coupling coefficient and phase velocity for (yxl)-16.5deg LiTaO3 were calculated as a function of the angle psi, which indicates the direction of the driving electric field with respect to the crystallographic x-axis of the piezoelectric plate. Several LFE devices of 5 MHz were designed and fabricated in two groups: psi = 0deg and psi = plusmn90deg. The result shows that for the LFE device of psi = 0deg operating in water, the thickness shear mode (TSM) could be excited both by LFE and TFE (thickness field excitation). For psi = plusmn90deg, the TSM is launched only by TFE and the device is in fact a pseudo-LFE device. Similar investigation has also been done to AT-cut quartz. The result suggests that the reported LFE AT-cut acoustic wave sensors may well be possible a pseudo-LFE device or a combination of TFE and LFE.","PeriodicalId":220442,"journal":{"name":"2008 IEEE International Frequency Control Symposium","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE International Frequency Control Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FREQ.2008.4622975","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
In the present study, the LFE (lateral field excitation) coupling coefficient and phase velocity for (yxl)-16.5deg LiTaO3 were calculated as a function of the angle psi, which indicates the direction of the driving electric field with respect to the crystallographic x-axis of the piezoelectric plate. Several LFE devices of 5 MHz were designed and fabricated in two groups: psi = 0deg and psi = plusmn90deg. The result shows that for the LFE device of psi = 0deg operating in water, the thickness shear mode (TSM) could be excited both by LFE and TFE (thickness field excitation). For psi = plusmn90deg, the TSM is launched only by TFE and the device is in fact a pseudo-LFE device. Similar investigation has also been done to AT-cut quartz. The result suggests that the reported LFE AT-cut acoustic wave sensors may well be possible a pseudo-LFE device or a combination of TFE and LFE.