Parameters and order estimation for non-Gaussian ARMA processes

A. Al-Smadi, D. Wilkes
{"title":"Parameters and order estimation for non-Gaussian ARMA processes","authors":"A. Al-Smadi, D. Wilkes","doi":"10.1109/SECON.1996.510123","DOIUrl":null,"url":null,"abstract":"There has been a lot of interest in using higher-order statistics (such as cumulants) in signal processing and system identification problems. There are several reasons behind this interest. First, higher-order cumulants are blind to all kinds of Gaussian processes, hence cumulants suppress additive colored Gaussian noise. Therefore if the signal to be analysed is contaminated by additive Gaussian noise, the noise will vanish in the cumulant domain. Thus, a greater degree of noise immunity is possible. Second, cumulants are useful for identifying nonminimum phase systems or for reconstructing nonminimum phase signals if the signals are non-Gaussian. That is because cumulants preserve the phase information of the signal. Third, cumulants are useful for detecting and characterizing the properties of nonlinear systems. The emphasis of this paper is based on the first property. We address the problem of estimating the orders and the parameters of a non-Gaussian autoregressive moving-average (ARMA) and autoregressive with exogenous input (ARX) processes using third order cumulants. The ARMA processes are widely used in signal modeling and spectrum estimation.","PeriodicalId":338029,"journal":{"name":"Proceedings of SOUTHEASTCON '96","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of SOUTHEASTCON '96","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SECON.1996.510123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

There has been a lot of interest in using higher-order statistics (such as cumulants) in signal processing and system identification problems. There are several reasons behind this interest. First, higher-order cumulants are blind to all kinds of Gaussian processes, hence cumulants suppress additive colored Gaussian noise. Therefore if the signal to be analysed is contaminated by additive Gaussian noise, the noise will vanish in the cumulant domain. Thus, a greater degree of noise immunity is possible. Second, cumulants are useful for identifying nonminimum phase systems or for reconstructing nonminimum phase signals if the signals are non-Gaussian. That is because cumulants preserve the phase information of the signal. Third, cumulants are useful for detecting and characterizing the properties of nonlinear systems. The emphasis of this paper is based on the first property. We address the problem of estimating the orders and the parameters of a non-Gaussian autoregressive moving-average (ARMA) and autoregressive with exogenous input (ARX) processes using third order cumulants. The ARMA processes are widely used in signal modeling and spectrum estimation.
非高斯ARMA过程的参数和阶数估计
在信号处理和系统识别问题中使用高阶统计量(如累积量)已经引起了很多兴趣。这种兴趣背后有几个原因。首先,高阶累积量对各种高斯过程都是盲的,因此累积量抑制了加性有色高斯噪声。因此,如果待分析的信号被加性高斯噪声污染,噪声将在累积域中消失。因此,更大程度的抗噪声是可能的。其次,累积量对于识别非最小相位系统或重建非高斯信号是非最小相位信号是有用的。这是因为累积量保留了信号的相位信息。第三,累积量对于检测和表征非线性系统的特性是有用的。本文的重点是基于第一个性质。我们解决了使用三阶累积量估计非高斯自回归移动平均(ARMA)和带有外生输入的自回归(ARX)过程的阶数和参数的问题。ARMA过程广泛应用于信号建模和频谱估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信