A Method for Modeling the Output Power of Photovoltaic Power Supplies Based on Non-parametric Kernel Density Estimation

Wenbin Hao, Zhigao Meng, Peng Zeng, Boluo Xie, Jianhua Chen, Jiaqi Wei
{"title":"A Method for Modeling the Output Power of Photovoltaic Power Supplies Based on Non-parametric Kernel Density Estimation","authors":"Wenbin Hao, Zhigao Meng, Peng Zeng, Boluo Xie, Jianhua Chen, Jiaqi Wei","doi":"10.1109/REPE55559.2022.9949285","DOIUrl":null,"url":null,"abstract":"To address the shortcomings of the traditional PV power output model, which requires the assumption of parameter distribution and cannot fully consider the influence of various random factors, this paper adopts the k-nearest neighbor estimation method and the kernel density estimation method based on the non-parametric estimation theory to describe the PV power output respectively, and proposes an improved optimal bandwidth calculation model without reference to the overall distribution for the kernel density bandwidth selection problem, and selects the actual measured data of a large PV power supply in a certain region for simulation and comparison analysis to verify the correctness, validity, and adaptability of the proposed kernel density estimation probability model to the random characteristics of different PV power supplies.","PeriodicalId":115453,"journal":{"name":"2022 5th International Conference on Renewable Energy and Power Engineering (REPE)","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 5th International Conference on Renewable Energy and Power Engineering (REPE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/REPE55559.2022.9949285","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

To address the shortcomings of the traditional PV power output model, which requires the assumption of parameter distribution and cannot fully consider the influence of various random factors, this paper adopts the k-nearest neighbor estimation method and the kernel density estimation method based on the non-parametric estimation theory to describe the PV power output respectively, and proposes an improved optimal bandwidth calculation model without reference to the overall distribution for the kernel density bandwidth selection problem, and selects the actual measured data of a large PV power supply in a certain region for simulation and comparison analysis to verify the correctness, validity, and adaptability of the proposed kernel density estimation probability model to the random characteristics of different PV power supplies.
基于非参数核密度估计的光伏电源输出功率建模方法
针对传统光伏发电出力模型需要假设参数分布,不能充分考虑各种随机因素影响的缺点,本文分别采用基于非参数估计理论的k近邻估计方法和核密度估计方法来描述光伏发电出力。针对核密度带宽选择问题,提出了一种改进的不考虑总体分布的最优带宽计算模型,并选取某区域某大型光伏电源的实际实测数据进行仿真对比分析,验证所提出的核密度估计概率模型对不同光伏电源随机特性的正确性、有效性和适应性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信