Advanced Hierarchical Predictive Routing Control of a smart de-manufacturing plant

R. Boffadossi, L. Fagiano, A. Cataldo, Marko Tanaskovic, M. Lauricella
{"title":"Advanced Hierarchical Predictive Routing Control of a smart de-manufacturing plant","authors":"R. Boffadossi, L. Fagiano, A. Cataldo, Marko Tanaskovic, M. Lauricella","doi":"10.23919/ecc54610.2021.9655105","DOIUrl":null,"url":null,"abstract":"The application of a novel approach to the routing control problem of a real de-manufacturing plant is presented. Named Hierarchical Predictive Routing Control (HPRC) and recently proposed in the literature, the approach deals with large number of integer inputs and complex temporal-logic constraints by adopting a low-level path-following strategy and a high-level predictive path allocation. Several improvements are presented, including a novel search tree exploration method, lockout detection routines, and plant-specific handling constraints. Simulation results show very good performance and small computational times even with high number of pallets and long prediction horizon values.","PeriodicalId":105499,"journal":{"name":"2021 European Control Conference (ECC)","volume":"171 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 European Control Conference (ECC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ecc54610.2021.9655105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The application of a novel approach to the routing control problem of a real de-manufacturing plant is presented. Named Hierarchical Predictive Routing Control (HPRC) and recently proposed in the literature, the approach deals with large number of integer inputs and complex temporal-logic constraints by adopting a low-level path-following strategy and a high-level predictive path allocation. Several improvements are presented, including a novel search tree exploration method, lockout detection routines, and plant-specific handling constraints. Simulation results show very good performance and small computational times even with high number of pallets and long prediction horizon values.
智能去制造工厂的高级分层预测路径控制
提出了一种新方法在实际解制造工厂的路径控制问题中的应用。该方法被命名为分层预测路由控制(HPRC),最近在文献中提出,该方法通过采用低级路径跟踪策略和高级预测路径分配来处理大量整数输入和复杂的时间逻辑约束。提出了一些改进,包括一种新的搜索树探索方法,锁定检测例程和特定于植物的处理约束。仿真结果表明,即使在托盘数量多、预测视界值长的情况下,该算法也具有良好的性能和较短的计算时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信