E. Moradi, K. Koski, L. Ukkonen, Y. Rahmat-Samii, T. Bjorninen, L. Sydanheimo
{"title":"Embroidered RFID tags in body-centric communication","authors":"E. Moradi, K. Koski, L. Ukkonen, Y. Rahmat-Samii, T. Bjorninen, L. Sydanheimo","doi":"10.1109/IWAT.2013.6518367","DOIUrl":null,"url":null,"abstract":"Wearable Radio Frequency Identification (RFID) tags for body-centric communication can be used in security, healthcare and biomedical applications. Embroidered tags using conductive threads are strong candidates for the implementation of wearable antennas. They provide several important features, such as flexibility, integrability, and light-weight structures. In this paper, the on-body performance of embroidered dipole-type ultra-high frequency (UHF) RFID tags is studied. First, modeling techniques for the embroidered tag antennas and for the human body are presented. The simulation models are then used to design and optimize an embroidered dipole tag to provide a read range of 2.5 m when separated from the human arm with a 1-mm thick layer of cotton fabric.","PeriodicalId":247542,"journal":{"name":"2013 International Workshop on Antenna Technology (iWAT)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Workshop on Antenna Technology (iWAT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWAT.2013.6518367","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21
Abstract
Wearable Radio Frequency Identification (RFID) tags for body-centric communication can be used in security, healthcare and biomedical applications. Embroidered tags using conductive threads are strong candidates for the implementation of wearable antennas. They provide several important features, such as flexibility, integrability, and light-weight structures. In this paper, the on-body performance of embroidered dipole-type ultra-high frequency (UHF) RFID tags is studied. First, modeling techniques for the embroidered tag antennas and for the human body are presented. The simulation models are then used to design and optimize an embroidered dipole tag to provide a read range of 2.5 m when separated from the human arm with a 1-mm thick layer of cotton fabric.