Backtranslation in Neural Morphological Inflection

Ling Liu, Mans Hulden
{"title":"Backtranslation in Neural Morphological Inflection","authors":"Ling Liu, Mans Hulden","doi":"10.18653/v1/2021.insights-1.13","DOIUrl":null,"url":null,"abstract":"Backtranslation is a common technique for leveraging unlabeled data in low-resource scenarios in machine translation. The method is directly applicable to morphological inflection generation if unlabeled word forms are available. This paper evaluates the potential of backtranslation for morphological inflection using data from six languages with labeled data drawn from the SIGMORPHON shared task resource and unlabeled data from different sources. Our core finding is that backtranslation can offer modest improvements in low-resource scenarios, but only if the unlabeled data is very clean and has been filtered by the same annotation standards as the labeled data.","PeriodicalId":166055,"journal":{"name":"Proceedings of the Second Workshop on Insights from Negative Results in NLP","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Second Workshop on Insights from Negative Results in NLP","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2021.insights-1.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Backtranslation is a common technique for leveraging unlabeled data in low-resource scenarios in machine translation. The method is directly applicable to morphological inflection generation if unlabeled word forms are available. This paper evaluates the potential of backtranslation for morphological inflection using data from six languages with labeled data drawn from the SIGMORPHON shared task resource and unlabeled data from different sources. Our core finding is that backtranslation can offer modest improvements in low-resource scenarios, but only if the unlabeled data is very clean and has been filtered by the same annotation standards as the labeled data.
神经形态变化的反翻译
反向翻译是在机器翻译的低资源场景中利用未标记数据的常用技术。该方法是直接适用于词形变化的产生,如果未标记的词形可用。本文使用来自SIGMORPHON共享任务资源的标记数据和来自不同来源的未标记数据,评估了六种语言的词形变化反翻译的潜力。我们的核心发现是,在低资源场景下,反向翻译可以提供适度的改进,但前提是未标记的数据非常干净,并且与标记的数据经过相同的注释标准过滤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信