An Ensemble Model using CNNs on Different Domains for ALASKA2 Image Steganalysis

Kaizaburo Chubachi
{"title":"An Ensemble Model using CNNs on Different Domains for ALASKA2 Image Steganalysis","authors":"Kaizaburo Chubachi","doi":"10.1109/WIFS49906.2020.9360892","DOIUrl":null,"url":null,"abstract":"We present our third place solution for the ALASKA2 Image Steganalysis competition. We develop detectors using convolutional neural networks (CNNs) on both the spatial domain and the frequency domain of the discrete cosine transform used in JPEG compression. Our CNN detectors use state-of-the-art architectures in image classification tasks. We adjust the architecture to better capture the features of steganography methods in the frequency domain. We build an ensemble model of these CNNs, in which both spatial and frequency domain models contribute to performance. In this paper, we describe those models in detail and explain how the techniques used in them improve accuracy through experiments.","PeriodicalId":354881,"journal":{"name":"2020 IEEE International Workshop on Information Forensics and Security (WIFS)","volume":"100 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Workshop on Information Forensics and Security (WIFS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WIFS49906.2020.9360892","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

We present our third place solution for the ALASKA2 Image Steganalysis competition. We develop detectors using convolutional neural networks (CNNs) on both the spatial domain and the frequency domain of the discrete cosine transform used in JPEG compression. Our CNN detectors use state-of-the-art architectures in image classification tasks. We adjust the architecture to better capture the features of steganography methods in the frequency domain. We build an ensemble model of these CNNs, in which both spatial and frequency domain models contribute to performance. In this paper, we describe those models in detail and explain how the techniques used in them improve accuracy through experiments.
基于不同域cnn的ALASKA2图像隐写集成模型
我们为ALASKA2图像隐写分析比赛提出了第三名的解决方案。我们在JPEG压缩中使用的离散余弦变换的空间域和频域上使用卷积神经网络(cnn)开发检测器。我们的CNN检测器在图像分类任务中使用最先进的架构。我们调整了结构,以便更好地捕捉隐写方法在频域的特征。我们建立了这些cnn的集成模型,其中空间和频域模型都有助于性能。在本文中,我们详细描述了这些模型,并通过实验说明了这些模型中使用的技术是如何提高精度的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信