Integration on a Compact Connected Lie Group

L. Tu
{"title":"Integration on a Compact Connected Lie Group","authors":"L. Tu","doi":"10.2307/j.ctvrdf1gz.19","DOIUrl":null,"url":null,"abstract":"This chapter explores integration on a compact connected Lie group. One of the great advantages of working with a compact Lie group is the possibility of extending the notion of averaging from a finite group to the compact Lie group. If the compact Lie group is connected, then there exists a unique bi-invariant top-degree form with total integral 1, which simplifies the presentation of averaging. The averaging operator is useful for constructing invariant objects. For example, suppose a compact connected Lie group G acts smoothly on the left on a manifold M. Given any C∞ differential k-form ω‎ on M, by averaging all the left translates of ω‎ over G, one can produce a C∞ invariant k-form on M. As another example, on a G-manifold one can average all translates of a Riemannian metric to produce an invariant Riemann metric.","PeriodicalId":272846,"journal":{"name":"Introductory Lectures on Equivariant Cohomology","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Introductory Lectures on Equivariant Cohomology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2307/j.ctvrdf1gz.19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This chapter explores integration on a compact connected Lie group. One of the great advantages of working with a compact Lie group is the possibility of extending the notion of averaging from a finite group to the compact Lie group. If the compact Lie group is connected, then there exists a unique bi-invariant top-degree form with total integral 1, which simplifies the presentation of averaging. The averaging operator is useful for constructing invariant objects. For example, suppose a compact connected Lie group G acts smoothly on the left on a manifold M. Given any C∞ differential k-form ω‎ on M, by averaging all the left translates of ω‎ over G, one can produce a C∞ invariant k-form on M. As another example, on a G-manifold one can average all translates of a Riemannian metric to produce an invariant Riemann metric.
紧连通李群上的积分
本章探讨紧连通李群上的积分。处理紧李群的一大优点是可以将有限群的平均概念推广到紧李群。如果紧李群是连通的,则存在一个唯一的双不变顶次形式,其总积分为1,简化了平均的表示。平均运算符对于构造不变对象很有用。例如,假设紧连通李群G平滑地作用于流形M上。给定M上任意C∞微分k形式ω′,通过对ω′在G上的所有左平移取平均值,可以在M上得到一个C∞不变k形式。作为另一个例子,在G流形上可以对黎曼度规的所有平移取平均值,从而得到一个不变黎曼度规。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信