A Comprehensive Analysis on Risk Prediction of Acute Coronary Syndrome Using Machine Learning Approaches

M. Raihan, M. M. Islam, Promila Ghosh, S. Shaj, Mubtasim Rafid Chowdhury, Saikat Mondal, A. More
{"title":"A Comprehensive Analysis on Risk Prediction of Acute Coronary Syndrome Using Machine Learning Approaches","authors":"M. Raihan, M. M. Islam, Promila Ghosh, S. Shaj, Mubtasim Rafid Chowdhury, Saikat Mondal, A. More","doi":"10.1109/ICCITECHN.2018.8631930","DOIUrl":null,"url":null,"abstract":"Acute Coronary Syndrome (ACS) is liable for the sudden death. The originator of tachycardia is drug addiction, hyperpiesia polygenic disorder, lipidemia. From the healthcare unit, ACS patients dataset has been collected. By preprocessing the information the chances of the exigency of tachycardia by possessing machine learning (ML) approaches are analyzed. The proficiency of ML techniques for prediction is authentic than any other traditional systems. The central scheme of this analysis is to anticipate the significant contingency of tachycardia. Neural Network, SVM, AdaBoost, Bagging, K-NN, Random Forest approaches are used as long as anticipating the betrayal of ACS. The high-grade exactness with AdaBoost and Bagging are 75.49% and 76.28%. The precision and recall for AdaBoost are 0.741; 0.75 and 0.755; 0.763 for Bagging techniques respectively.","PeriodicalId":355984,"journal":{"name":"2018 21st International Conference of Computer and Information Technology (ICCIT)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 21st International Conference of Computer and Information Technology (ICCIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCITECHN.2018.8631930","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

Acute Coronary Syndrome (ACS) is liable for the sudden death. The originator of tachycardia is drug addiction, hyperpiesia polygenic disorder, lipidemia. From the healthcare unit, ACS patients dataset has been collected. By preprocessing the information the chances of the exigency of tachycardia by possessing machine learning (ML) approaches are analyzed. The proficiency of ML techniques for prediction is authentic than any other traditional systems. The central scheme of this analysis is to anticipate the significant contingency of tachycardia. Neural Network, SVM, AdaBoost, Bagging, K-NN, Random Forest approaches are used as long as anticipating the betrayal of ACS. The high-grade exactness with AdaBoost and Bagging are 75.49% and 76.28%. The precision and recall for AdaBoost are 0.741; 0.75 and 0.755; 0.763 for Bagging techniques respectively.
基于机器学习方法的急性冠脉综合征风险预测综合分析
急性冠脉综合征(ACS)是导致猝死的主要原因。心动过速的根源是药物成瘾、多基因亢进症、血脂。从医疗保健单位收集了ACS患者数据集。通过对这些信息进行预处理,利用机器学习方法分析了发生心动过速急迫性的可能性。机器学习技术在预测方面的熟练程度比任何其他传统系统都要可信。本分析的中心方案是预测心动过速的重大偶然性。只要预测ACS的背叛,就使用神经网络、支持向量机、AdaBoost、Bagging、K-NN、随机森林方法。AdaBoost和Bagging的准确率分别为75.49%和76.28%。AdaBoost的查全率和查准率为0.741;0.75和0.755;Bagging技术分别为0.763。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信