Hang Chen, Jian Wang, Yue Gao, Cheng-Chih Hsu, Peng Jin, Jie Lin
{"title":"Two-dimensional reflective optical encoder based on point source illuminated grating imaging","authors":"Hang Chen, Jian Wang, Yue Gao, Cheng-Chih Hsu, Peng Jin, Jie Lin","doi":"10.1117/12.2511441","DOIUrl":null,"url":null,"abstract":"A novel two-dimensional reflective grating encoder is introduced. The optical encoder is developed by a binary amplitude reflective scale grating and a two-dimensional slit displacement sensor, which is fabricated by MEMS technology. Based on Talbot effort, the proposed method can achieve millimetric measurement with high accuracy, where the displacement difference within 0.1% and 0.2% for 1 mm and 20 mm measurement, respectively. By using the eight-segment data division program, the proposed method can easily distinguish 1 μm displacement measurement. Furthermore, in measurement speed tests, the proposed method can reach the movement speed about 5000 μm/s. The experimental results showed the proposed method can achieve high resolution, high speed and long-range measurement, which is potential in the industries and workshops application.","PeriodicalId":115119,"journal":{"name":"International Symposium on Precision Engineering Measurement and Instrumentation","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Precision Engineering Measurement and Instrumentation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2511441","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
A novel two-dimensional reflective grating encoder is introduced. The optical encoder is developed by a binary amplitude reflective scale grating and a two-dimensional slit displacement sensor, which is fabricated by MEMS technology. Based on Talbot effort, the proposed method can achieve millimetric measurement with high accuracy, where the displacement difference within 0.1% and 0.2% for 1 mm and 20 mm measurement, respectively. By using the eight-segment data division program, the proposed method can easily distinguish 1 μm displacement measurement. Furthermore, in measurement speed tests, the proposed method can reach the movement speed about 5000 μm/s. The experimental results showed the proposed method can achieve high resolution, high speed and long-range measurement, which is potential in the industries and workshops application.