Fusing Simultaneous EEG and fMRI Using Functional and Anatomical Information

Sofie Therese Hansen, I. Winkler, L. K. Hansen, K. Müller, Sven Dähne
{"title":"Fusing Simultaneous EEG and fMRI Using Functional and Anatomical Information","authors":"Sofie Therese Hansen, I. Winkler, L. K. Hansen, K. Müller, Sven Dähne","doi":"10.1109/PRNI.2015.22","DOIUrl":null,"url":null,"abstract":"Simultaneously measuring electro physical and hemodynamic signals has become more accessible in the last years and the need for modeling techniques that can fuse the modalities is growing. In this work we augment a specific fusion method, the multimodal Source Power Co-modulation (mSPoC), to not only use functional but also anatomical information. The goal is to extract correlated source components from electroencephalography (EEG) and functional magnetic resonance imaging (fMRI). Anatomical information enters our proposed extension to mSPoC via the forward model, which relates the activity on cortex level to the EEG sensors. The augmented mSPoC is shown to outperform the original version in realistic simulations where the signal to noise ratio is low or where training epochs are scarce.","PeriodicalId":380902,"journal":{"name":"2015 International Workshop on Pattern Recognition in NeuroImaging","volume":"683 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Workshop on Pattern Recognition in NeuroImaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PRNI.2015.22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Simultaneously measuring electro physical and hemodynamic signals has become more accessible in the last years and the need for modeling techniques that can fuse the modalities is growing. In this work we augment a specific fusion method, the multimodal Source Power Co-modulation (mSPoC), to not only use functional but also anatomical information. The goal is to extract correlated source components from electroencephalography (EEG) and functional magnetic resonance imaging (fMRI). Anatomical information enters our proposed extension to mSPoC via the forward model, which relates the activity on cortex level to the EEG sensors. The augmented mSPoC is shown to outperform the original version in realistic simulations where the signal to noise ratio is low or where training epochs are scarce.
利用功能和解剖信息融合EEG和fMRI
在过去的几年里,同时测量电物理和血液动力学信号变得越来越容易,对能够融合这些模式的建模技术的需求正在增长。在这项工作中,我们增强了一种特定的融合方法,即多模态源功率共调制(mSPoC),不仅可以使用功能信息,还可以使用解剖信息。目的是从脑电图(EEG)和功能磁共振成像(fMRI)中提取相关的源成分。解剖信息通过正演模型进入我们提出的mSPoC扩展,该模型将皮层水平的活动与脑电图传感器联系起来。在信噪比较低或训练周期较少的现实仿真中,增强的mSPoC表现优于原始版本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信