Asymptotic Performance of ALOHA-Based Cognitive Overlaid Networks

A. Banaei, C. Georghiades, Shuguang Cui
{"title":"Asymptotic Performance of ALOHA-Based Cognitive Overlaid Networks","authors":"A. Banaei, C. Georghiades, Shuguang Cui","doi":"10.1109/SDR.2010.5507927","DOIUrl":null,"url":null,"abstract":"We study the asymptotic performance of two overlaid wireless ad-hoc networks that utilize the same temporal, spectral, and spatial resources based on random access schemes. The primary network consists of Poisson distributed legacy users with density $n$ and the secondary network consists of Poisson distributed cognitive radio users with density $m = n^{β}$ ($β > 1$) that utilize the spectrum opportunistically. Both networks are \\emph{decentralized} and deploy ALOHA protocols where the secondary users are equipped with range-limited \\emph{perfect} spectrum sensors to monitor and protect primary transmissions. First, we show that both networks can achieve their corresponding stand-alone throughput scaling even without secondary spectrum sensing (i.e., sensing range set to zero), which implies the need for a more comprehensive performance metric than just throughput scaling to evaluate the influence of the overlaid interactions. We thus introduce a new criterion, termed as the \\emph{asymptotic multiplexing gain}, which captures the effect of spectrum sensing and inter-network interferences.","PeriodicalId":236424,"journal":{"name":"2010 Fifth IEEE Workshop on Networking Technologies for Software Defined Radio Networks (SDR)","volume":"85 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Fifth IEEE Workshop on Networking Technologies for Software Defined Radio Networks (SDR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SDR.2010.5507927","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We study the asymptotic performance of two overlaid wireless ad-hoc networks that utilize the same temporal, spectral, and spatial resources based on random access schemes. The primary network consists of Poisson distributed legacy users with density $n$ and the secondary network consists of Poisson distributed cognitive radio users with density $m = n^{β}$ ($β > 1$) that utilize the spectrum opportunistically. Both networks are \emph{decentralized} and deploy ALOHA protocols where the secondary users are equipped with range-limited \emph{perfect} spectrum sensors to monitor and protect primary transmissions. First, we show that both networks can achieve their corresponding stand-alone throughput scaling even without secondary spectrum sensing (i.e., sensing range set to zero), which implies the need for a more comprehensive performance metric than just throughput scaling to evaluate the influence of the overlaid interactions. We thus introduce a new criterion, termed as the \emph{asymptotic multiplexing gain}, which captures the effect of spectrum sensing and inter-network interferences.
基于aloha的认知覆盖网络的渐近性能
我们研究了基于随机访问方案的两个利用相同时间、频谱和空间资源的重叠无线自组织网络的渐近性能。主网络由密度为$n$的泊松分布式遗留用户组成,次网络由密度为$m = n^{β}$ ($β > 1$)的泊松分布式认知无线电用户组成,这些用户可以机会地利用频谱。两个网络都是\emph{分散}的,并部署了ALOHA协议,其中次要用户配备了范围有限的\emph{完美}频谱传感器,以监控和保护主要传输。首先,我们表明,即使没有二次频谱感知(即,感知范围设置为零),两个网络也可以实现相应的独立吞吐量缩放,这意味着需要一个比吞吐量缩放更全面的性能指标来评估覆盖交互的影响。因此,我们引入了一个新的准则,称为\emph{渐近复用增益},它捕获了频谱感知和网络间干扰的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信