Fractional Calculus for improving Edge-Based Active Contour Models.

Amira Bendaoud, F. Hachouf
{"title":"Fractional Calculus for improving Edge-Based Active Contour Models.","authors":"Amira Bendaoud, F. Hachouf","doi":"10.1109/ICRAMI52622.2021.9585925","DOIUrl":null,"url":null,"abstract":"In this paper, an attention is given to edge-stop function (ESF) in active contour models which are based on a gradient calculus. Usually this kind of algorithms uses the gradient of a smoothed image by a Gaussian kernel. In this work, a fractional calculus is introduced to the edge-stop function formulation. The regular gradient in the ESF formulation has been substituted by a fractional one. The Grunwald-Letnikov definition has been used. The proposed method has been tested on MRI database. Obtained results are good enough compared to existing methods in literature.","PeriodicalId":440750,"journal":{"name":"2021 International Conference on Recent Advances in Mathematics and Informatics (ICRAMI)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Recent Advances in Mathematics and Informatics (ICRAMI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRAMI52622.2021.9585925","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper, an attention is given to edge-stop function (ESF) in active contour models which are based on a gradient calculus. Usually this kind of algorithms uses the gradient of a smoothed image by a Gaussian kernel. In this work, a fractional calculus is introduced to the edge-stop function formulation. The regular gradient in the ESF formulation has been substituted by a fractional one. The Grunwald-Letnikov definition has been used. The proposed method has been tested on MRI database. Obtained results are good enough compared to existing methods in literature.
分数阶微积分改进基于边缘的活动轮廓模型。
本文研究了基于梯度演算的活动轮廓模型中的边缘停止函数。通常这类算法使用高斯核平滑图像的梯度。本文将分数阶微积分引入到边停止函数的公式中。ESF公式中的正则梯度已被分数阶梯度所取代。使用了Grunwald-Letnikov定义。该方法已在MRI数据库上进行了验证。与文献中已有的方法相比,得到的结果是足够好的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信