LEAD: Self-Supervised Landmark Estimation by Aligning Distributions of Feature Similarity

Tejan Karmali, Abhinav Atrishi, Sai Sree Harsha, Susmit Agrawal, Varun Jampani, R. Venkatesh Babu
{"title":"LEAD: Self-Supervised Landmark Estimation by Aligning Distributions of Feature Similarity","authors":"Tejan Karmali, Abhinav Atrishi, Sai Sree Harsha, Susmit Agrawal, Varun Jampani, R. Venkatesh Babu","doi":"10.1109/WACV51458.2022.00310","DOIUrl":null,"url":null,"abstract":"In this work, we introduce LEAD, an approach to dis-cover landmarks from an unannotated collection of category-specific images. Existing works in self-supervised landmark detection are based on learning dense (pixel-level) feature representations from an image, which are further used to learn landmarks in a semi-supervised manner. While there have been advances in self-supervised learning of image features for instance-level tasks like classification, these methods do not ensure dense equivariant representations. The property of equivariance is of interest for dense prediction tasks like landmark estimation. In this work, we introduce an approach to enhance the learning of dense equivariant representations in a self-supervised fashion. We follow a two-stage training approach: first, we train a network using the BYOL [13] objective which operates at an instance level. The correspondences obtained through this network are further used to train a dense and compact representation of the image using a lightweight network. We show that having such a prior in the feature extractor helps in landmark detection, even under drastically limited number of annotations while also improving generalization across scale variations.","PeriodicalId":297092,"journal":{"name":"2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WACV51458.2022.00310","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In this work, we introduce LEAD, an approach to dis-cover landmarks from an unannotated collection of category-specific images. Existing works in self-supervised landmark detection are based on learning dense (pixel-level) feature representations from an image, which are further used to learn landmarks in a semi-supervised manner. While there have been advances in self-supervised learning of image features for instance-level tasks like classification, these methods do not ensure dense equivariant representations. The property of equivariance is of interest for dense prediction tasks like landmark estimation. In this work, we introduce an approach to enhance the learning of dense equivariant representations in a self-supervised fashion. We follow a two-stage training approach: first, we train a network using the BYOL [13] objective which operates at an instance level. The correspondences obtained through this network are further used to train a dense and compact representation of the image using a lightweight network. We show that having such a prior in the feature extractor helps in landmark detection, even under drastically limited number of annotations while also improving generalization across scale variations.
LEAD:基于特征相似度对齐分布的自监督地标估计
在这项工作中,我们介绍了LEAD,一种从未注释的特定类别图像集合中发现地标的方法。现有的自监督地标检测工作是基于从图像中学习密集(像素级)特征表示,并进一步以半监督的方式学习地标。虽然在实例级任务(如分类)中图像特征的自监督学习方面取得了进展,但这些方法并不能确保密集的等变表示。等方差的性质对于像地标估计这样的密集预测任务很有意义。在这项工作中,我们介绍了一种以自监督的方式增强密集等变表示学习的方法。我们采用两阶段训练方法:首先,我们使用BYOL[13]目标训练网络,该目标在实例级别上运行。通过该网络获得的对应关系进一步用于使用轻量级网络训练图像的密集和紧凑表示。我们表明,在特征提取器中具有这样的先验有助于地标检测,即使在注释数量非常有限的情况下,也可以提高跨尺度变化的泛化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信