On the power of unique 2-prover 1-round games

Subhash Khot
{"title":"On the power of unique 2-prover 1-round games","authors":"Subhash Khot","doi":"10.1145/509907.510017","DOIUrl":null,"url":null,"abstract":"A 2-prover game is called unique if the answer of one prover uniquely determines the answer of the second prover and vice versa (we implicitly assume games to be one round games). The value of a 2-prover game is the maximum acceptance probability of the verifier over all the prover strategies. We make a conjecture regarding the power of unique 2-prover games, which we call the Unique Games Conjecture.","PeriodicalId":193513,"journal":{"name":"Proceedings 17th IEEE Annual Conference on Computational Complexity","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"945","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 17th IEEE Annual Conference on Computational Complexity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/509907.510017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 945

Abstract

A 2-prover game is called unique if the answer of one prover uniquely determines the answer of the second prover and vice versa (we implicitly assume games to be one round games). The value of a 2-prover game is the maximum acceptance probability of the verifier over all the prover strategies. We make a conjecture regarding the power of unique 2-prover games, which we call the Unique Games Conjecture.
在独特的2-证明1轮游戏的力量
如果一个证明者的答案唯一地决定了第二个证明者的答案,那么两个证明者的博弈被称为唯一的,反之亦然(我们隐含地假设博弈是一轮博弈)。两个证明者博弈的值是所有证明者策略中验证者的最大接受概率。我们提出了一个关于唯一2证明博弈的猜想,我们称之为唯一博弈猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信