Yanru Wang, K. K. Chai, Yue Chen, J. Schormans, J. Loo
{"title":"Energy-Delay Aware Restricted Access Window with Novel Retransmission for IEEE 802.11ah Networks","authors":"Yanru Wang, K. K. Chai, Yue Chen, J. Schormans, J. Loo","doi":"10.1109/GLOCOM.2016.7841806","DOIUrl":null,"url":null,"abstract":"Restricted Access Window (RAW) has been introduced to IEEE 802.11ah MAC layer to decrease collision probability. However, the inappropriate application of RAW duration for diverse groups of devices would increase uplink energy consumption, delay and lower down the data rate. In this paper, we study a RAW optimization problem with a novel retransmission scheme that utilizes the next empty slot for retransmission in the uplink. The problem is formulated based on overall energy efficiency and delay of each RAW by applying probability theory and Markov Chain. To jointly optimize energy efficiency and delay, an energy-delay aware window control algorithm is proposed to adapt RAW size by estimating the number of time slots and internal slot duration in one RAW for different groups. The optimal solution is derived by applying Gradient Descent approach. Simulation results show that our proposed algorithm improves up to 113.3% energy efficiency and reduces 53.4% delay compared to the existing RAW.","PeriodicalId":425019,"journal":{"name":"2016 IEEE Global Communications Conference (GLOBECOM)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Global Communications Conference (GLOBECOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GLOCOM.2016.7841806","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
Restricted Access Window (RAW) has been introduced to IEEE 802.11ah MAC layer to decrease collision probability. However, the inappropriate application of RAW duration for diverse groups of devices would increase uplink energy consumption, delay and lower down the data rate. In this paper, we study a RAW optimization problem with a novel retransmission scheme that utilizes the next empty slot for retransmission in the uplink. The problem is formulated based on overall energy efficiency and delay of each RAW by applying probability theory and Markov Chain. To jointly optimize energy efficiency and delay, an energy-delay aware window control algorithm is proposed to adapt RAW size by estimating the number of time slots and internal slot duration in one RAW for different groups. The optimal solution is derived by applying Gradient Descent approach. Simulation results show that our proposed algorithm improves up to 113.3% energy efficiency and reduces 53.4% delay compared to the existing RAW.