Optimizing the structure of a path analysis model using a real-valued flexibly connected neural network

Shinya Watanuki, T. Nagao
{"title":"Optimizing the structure of a path analysis model using a real-valued flexibly connected neural network","authors":"Shinya Watanuki, T. Nagao","doi":"10.1109/IWCIA.2016.7805745","DOIUrl":null,"url":null,"abstract":"The path analysis model (PAM) is a multivariate statistical modeling technique widely used in the behavioral and social sciences. Although some methods for optimizing the parameters and reducing the variables in PAM have been proposed, only a few studies have focused on flexible optimization of the structure and parameter in PAM. In this study, we used a real-valued flexibly connected neural network (RFCN) to construct PAM. Using survey data, we then confirmed the validity of our approach from two viewpoints. First, we assessed our approach using statistical fitness indices. Then, we compared the obtained results with those obtained from previous studies on consumer psychology. The results confirmed that our proposed approach offers a novel way of constructing PAM using RFCN.","PeriodicalId":262942,"journal":{"name":"2016 IEEE 9th International Workshop on Computational Intelligence and Applications (IWCIA)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 9th International Workshop on Computational Intelligence and Applications (IWCIA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWCIA.2016.7805745","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The path analysis model (PAM) is a multivariate statistical modeling technique widely used in the behavioral and social sciences. Although some methods for optimizing the parameters and reducing the variables in PAM have been proposed, only a few studies have focused on flexible optimization of the structure and parameter in PAM. In this study, we used a real-valued flexibly connected neural network (RFCN) to construct PAM. Using survey data, we then confirmed the validity of our approach from two viewpoints. First, we assessed our approach using statistical fitness indices. Then, we compared the obtained results with those obtained from previous studies on consumer psychology. The results confirmed that our proposed approach offers a novel way of constructing PAM using RFCN.
利用实值柔性连接神经网络优化路径分析模型的结构
路径分析模型(PAM)是一种广泛应用于行为科学和社会科学的多元统计建模技术。虽然已经提出了一些优化PAM的参数和减少变量的方法,但对PAM结构和参数的柔性优化的研究很少。在本研究中,我们使用一个实值灵活连接神经网络(RFCN)来构建PAM。利用调查数据,我们从两个角度证实了我们的方法的有效性。首先,我们使用统计适应度指数来评估我们的方法。然后,我们将所得结果与以往的消费者心理学研究结果进行了比较。结果表明,本文提出的方法提供了一种利用RFCN构建PAM的新方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信