Inductive GMDH-Based Approach to Hierarchical Forecasting

Gregory A. Ivakhnenko
{"title":"Inductive GMDH-Based Approach to Hierarchical Forecasting","authors":"Gregory A. Ivakhnenko","doi":"10.1109/STC-CSIT.2018.8526705","DOIUrl":null,"url":null,"abstract":"In the paper, the inductive algorithms of hierarchical modelling for long-term forecasting are considered. GMDH algorithms are used to get accurate long-term forecasts on all levels of temporal data. Inductive approach allows to reconcile models and to increase accuracy of forecasting simultaneously on all levels of modelling. The results show that multi-level inductive algorithms can improve quality and extend forecast horizon in comparison with conventional univariate methods used in the hierarchical forecasting.","PeriodicalId":403793,"journal":{"name":"2018 IEEE 13th International Scientific and Technical Conference on Computer Sciences and Information Technologies (CSIT)","volume":"473 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 13th International Scientific and Technical Conference on Computer Sciences and Information Technologies (CSIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/STC-CSIT.2018.8526705","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the paper, the inductive algorithms of hierarchical modelling for long-term forecasting are considered. GMDH algorithms are used to get accurate long-term forecasts on all levels of temporal data. Inductive approach allows to reconcile models and to increase accuracy of forecasting simultaneously on all levels of modelling. The results show that multi-level inductive algorithms can improve quality and extend forecast horizon in comparison with conventional univariate methods used in the hierarchical forecasting.
基于gmdh的分层预测方法
本文研究了用于长期预测的分层建模的归纳算法。GMDH算法用于对各级时间数据进行准确的长期预报。归纳的方法允许调和模型和提高预测的准确性,同时在所有层次的建模。结果表明,与传统的单变量分层预测方法相比,多级归纳算法可以提高预测质量,扩大预测范围。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信