Gu Mei-zhen, Xu Hong-ming, C. Fang, Li Xiao-yan, Jia Yu-gang, Liu Ke-yong
{"title":"[Establishment of pharyngeal 3-dimensional finite element model of patients with isolated cleft palate].","authors":"Gu Mei-zhen, Xu Hong-ming, C. Fang, Li Xiao-yan, Jia Yu-gang, Liu Ke-yong","doi":"10.19439/J.SJOS.2018.06.006","DOIUrl":null,"url":null,"abstract":"PURPOSE The aim of this study was to provide basis for future design and selection of cleft palate surgery through establishing finite element model of pharyngeal cavity which was suitable for biomechanical analysis. METHODS One patient with isolated cleft palate and 1 normal child underwent multilayer head CT examination. The scanned data of pharyngeal cavity were imported into Mimics software for a 3-D geometric model reconstruction. The model was divided into a grid, so it can be further processed for subsequent finite element analysis. RESULTS After applying 5cm water column pressure load of 0.0005 MPa at the back edge of the soft palate in the two models respectively, the results showed that the maximum stress of the abnormal nasopharyngeal cavity model was 0.025 MPa, greater than the normal model (0.017 MPa). The same pressure loading was applied to different parts of the two models, the stress change area in the posterior margin of the soft palate and the middle of the palate was the same, and the stress in the front of the hard palate was smaller. CONCLUSIONS Finite element model has good biomechanical characteristics and geometric similarity. It can be used in isolated cleft palate with preoperative biomechanical analysis, for repairing and functional reconstructive surgery to provide ideal biomechanical model predicts.","PeriodicalId":436266,"journal":{"name":"Chinese Journal of Oral Implantology","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Oral Implantology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.19439/J.SJOS.2018.06.006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
PURPOSE The aim of this study was to provide basis for future design and selection of cleft palate surgery through establishing finite element model of pharyngeal cavity which was suitable for biomechanical analysis. METHODS One patient with isolated cleft palate and 1 normal child underwent multilayer head CT examination. The scanned data of pharyngeal cavity were imported into Mimics software for a 3-D geometric model reconstruction. The model was divided into a grid, so it can be further processed for subsequent finite element analysis. RESULTS After applying 5cm water column pressure load of 0.0005 MPa at the back edge of the soft palate in the two models respectively, the results showed that the maximum stress of the abnormal nasopharyngeal cavity model was 0.025 MPa, greater than the normal model (0.017 MPa). The same pressure loading was applied to different parts of the two models, the stress change area in the posterior margin of the soft palate and the middle of the palate was the same, and the stress in the front of the hard palate was smaller. CONCLUSIONS Finite element model has good biomechanical characteristics and geometric similarity. It can be used in isolated cleft palate with preoperative biomechanical analysis, for repairing and functional reconstructive surgery to provide ideal biomechanical model predicts.