Enhancement of Neuro-eigenspace Face Recognition Using Photometric Normalization

S. A. Nazeer, M. Khalid, Nazaruddin Omar, M. K. Awang
{"title":"Enhancement of Neuro-eigenspace Face Recognition Using Photometric Normalization","authors":"S. A. Nazeer, M. Khalid, Nazaruddin Omar, M. K. Awang","doi":"10.1109/CGIV.2007.38","DOIUrl":null,"url":null,"abstract":"A face recognition system based on recent method which concerned with both representation and recognition using learning algorithm is presented. The learning algorithm, artificial neural network is used as a classifier for face recognition and face verification whereas the features are extracted using linear sub- space techniques. This paper initially provides the overview of the proposed face recognition system, and explains the methodology used. It then explains the performance evaluation of the proposed system by applying two photometric normalization techniques: Histogram equalization and Homomorphic filtering, and comparing with Euclidean distance and normalized correlation classifiers. The system produces promising results for face verification and face recognition where it achieved false acceptance rate (FAR) of 2.98% and false rejection rate (FRR) of 2.59% using ANN classifier with PCA feature extraction using homomorphic filtering, and 94.4% for recognition.","PeriodicalId":433577,"journal":{"name":"Computer Graphics, Imaging and Visualisation (CGIV 2007)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Graphics, Imaging and Visualisation (CGIV 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CGIV.2007.38","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

A face recognition system based on recent method which concerned with both representation and recognition using learning algorithm is presented. The learning algorithm, artificial neural network is used as a classifier for face recognition and face verification whereas the features are extracted using linear sub- space techniques. This paper initially provides the overview of the proposed face recognition system, and explains the methodology used. It then explains the performance evaluation of the proposed system by applying two photometric normalization techniques: Histogram equalization and Homomorphic filtering, and comparing with Euclidean distance and normalized correlation classifiers. The system produces promising results for face verification and face recognition where it achieved false acceptance rate (FAR) of 2.98% and false rejection rate (FRR) of 2.59% using ANN classifier with PCA feature extraction using homomorphic filtering, and 94.4% for recognition.
利用光度归一化增强神经特征空间人脸识别
提出了一种基于学习算法的人脸识别系统。采用人工神经网络学习算法作为人脸识别和人脸验证的分类器,采用线性子空间技术提取人脸特征。本文首先概述了所提出的人脸识别系统,并解释了所使用的方法。然后通过应用直方图均衡化和同态滤波两种光度归一化技术解释了所提出系统的性能评估,并与欧几里得距离和归一化相关分类器进行了比较。该系统在人脸验证和人脸识别方面取得了令人满意的结果,使用ANN分类器和使用同态滤波的PCA特征提取,该系统的错误接受率(FAR)为2.98%,错误拒绝率(FRR)为2.59%,识别率为94.4%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信