BotViz: A memory forensic-based botnet detection and visualization approach

Iman Sharafaldin, Amirhossein Gharib, Arash Habibi Lashkari, A. Ghorbani
{"title":"BotViz: A memory forensic-based botnet detection and visualization approach","authors":"Iman Sharafaldin, Amirhossein Gharib, Arash Habibi Lashkari, A. Ghorbani","doi":"10.1109/CCST.2017.8167804","DOIUrl":null,"url":null,"abstract":"Nowadays, there are many serious cyber security threats such as viruses, worms and trojans but without a doubt botnets are one of the largest threats. Although there are numerous ways to discover botnets and mitigate their effects, most methods have problems effecting detection, due to their evasive characteristics. Also, the majority of previous research uses only one data source (e.g. network traffic), which makes the botnet detection process very difficult over a network. This paper proposes a detection and visualization system, BotViz, to visualize botnets by using memory forensics analysis and a new domain generation algorithm detector. BotViz utilizes machine learning techniques to detect anomalous function hooking behaviors. We established a live Zeus botnet to evaluate the efficiency of the BotViz.","PeriodicalId":371622,"journal":{"name":"2017 International Carnahan Conference on Security Technology (ICCST)","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Carnahan Conference on Security Technology (ICCST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCST.2017.8167804","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Nowadays, there are many serious cyber security threats such as viruses, worms and trojans but without a doubt botnets are one of the largest threats. Although there are numerous ways to discover botnets and mitigate their effects, most methods have problems effecting detection, due to their evasive characteristics. Also, the majority of previous research uses only one data source (e.g. network traffic), which makes the botnet detection process very difficult over a network. This paper proposes a detection and visualization system, BotViz, to visualize botnets by using memory forensics analysis and a new domain generation algorithm detector. BotViz utilizes machine learning techniques to detect anomalous function hooking behaviors. We established a live Zeus botnet to evaluate the efficiency of the BotViz.
BotViz:一种基于内存取证的僵尸网络检测和可视化方法
如今,病毒、蠕虫、木马等严重的网络安全威胁层出不穷,而僵尸网络无疑是最大的威胁之一。尽管有许多方法可以发现僵尸网络并减轻其影响,但由于它们的规避特性,大多数方法都存在影响检测的问题。此外,大多数先前的研究只使用一个数据源(例如网络流量),这使得僵尸网络检测过程在网络上非常困难。本文提出了一个检测和可视化系统BotViz,利用内存取证分析和一种新的域生成算法检测器来可视化僵尸网络。BotViz利用机器学习技术来检测异常的函数挂钩行为。我们建立了一个实时Zeus僵尸网络来评估BotViz的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信