Deep Learning-Based Log Anomaly Detection for 5G Core Network

Yawen Tan, Jiadai Wang, Jiajia Liu, Yuanhao Li
{"title":"Deep Learning-Based Log Anomaly Detection for 5G Core Network","authors":"Yawen Tan, Jiadai Wang, Jiajia Liu, Yuanhao Li","doi":"10.1109/ICCC57788.2023.10233555","DOIUrl":null,"url":null,"abstract":"Adopting network function virtualization in 5G core network (CN) enables flexible and agile service development, but it also brings increased complexity and the likelihood of anomalies, emphasizing the vital importance of effective anomaly detection. While existing research primarily focuses on detecting external anomalies for 5G networks through network traffic analysis, there is a growing need to identify internal abnormalities and failures within the 5G CN. Towards this end, considering the wide recognition of log data as a valuable information source for troubleshooting and fault diagnosis, we develop a deep learning (DL)-based log anomaly detection framework for 5G CN. The framework encompasses log parsing, log grouping, feature extraction, and model training, and each module is designed with distinct functionalities to enable combinational usage in various situations. We also establish a cloud-native 5G testbed to facilitate the collection of a large-volume 5G CN log dataset, wherein multiple types of anomalies are injected. Evaluation results illustrate that our highest achieved F1 score exceeds 97%, highlighting the effectiveness of our proposed anomaly detection framework for 5G CN.","PeriodicalId":191968,"journal":{"name":"2023 IEEE/CIC International Conference on Communications in China (ICCC)","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE/CIC International Conference on Communications in China (ICCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCC57788.2023.10233555","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Adopting network function virtualization in 5G core network (CN) enables flexible and agile service development, but it also brings increased complexity and the likelihood of anomalies, emphasizing the vital importance of effective anomaly detection. While existing research primarily focuses on detecting external anomalies for 5G networks through network traffic analysis, there is a growing need to identify internal abnormalities and failures within the 5G CN. Towards this end, considering the wide recognition of log data as a valuable information source for troubleshooting and fault diagnosis, we develop a deep learning (DL)-based log anomaly detection framework for 5G CN. The framework encompasses log parsing, log grouping, feature extraction, and model training, and each module is designed with distinct functionalities to enable combinational usage in various situations. We also establish a cloud-native 5G testbed to facilitate the collection of a large-volume 5G CN log dataset, wherein multiple types of anomalies are injected. Evaluation results illustrate that our highest achieved F1 score exceeds 97%, highlighting the effectiveness of our proposed anomaly detection framework for 5G CN.
基于深度学习的5G核心网日志异常检测
在5G核心网中采用网络功能虚拟化,可以实现灵活敏捷的业务开发,但也会增加业务的复杂性和异常发生的可能性,因此,有效的异常检测至关重要。虽然现有的研究主要集中在通过网络流量分析检测5G网络的外部异常,但越来越需要识别5G网络内部的异常和故障。为此,考虑到日志数据被广泛认为是故障排除和故障诊断的有价值的信息源,我们开发了一个基于深度学习(DL)的5G CN日志异常检测框架。该框架包括日志解析、日志分组、特征提取和模型训练,每个模块都设计了不同的功能,以便在各种情况下组合使用。我们还建立了云原生5G测试平台,以方便大容量5G CN日志数据集的收集,其中注入了多种类型的异常。评估结果表明,我们的最高F1得分超过97%,突出了我们提出的5G CN异常检测框架的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信