Experiments on keyword list generation by term distribution clustering for text classification

Wilson Fonda, A. Purwarianti
{"title":"Experiments on keyword list generation by term distribution clustering for text classification","authors":"Wilson Fonda, A. Purwarianti","doi":"10.1109/ICACSIS.2014.7065879","DOIUrl":null,"url":null,"abstract":"Text classification is a useful task in text mining. Most researchers employ one word weight type in the text classification. Here, we proposed to build a keyword list by combining several word weights for a rule based multi label text classification. Through this research, we conducted experiments on the term distribution clustering to produce the best automatic generated keyword list. We compared several term weights such as TFxIDF, MI, IG, and DF. As for the case study, we implemented the text classification of authority classification in complaint management system using the generated keyword list. The experiments on 245 Twitter data using keyword list generated from 2325 Twitter data showed that the best accuracy was achieved by using all term weights compared to only one term weight in the term distribution clustering.","PeriodicalId":443250,"journal":{"name":"2014 International Conference on Advanced Computer Science and Information System","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Advanced Computer Science and Information System","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACSIS.2014.7065879","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Text classification is a useful task in text mining. Most researchers employ one word weight type in the text classification. Here, we proposed to build a keyword list by combining several word weights for a rule based multi label text classification. Through this research, we conducted experiments on the term distribution clustering to produce the best automatic generated keyword list. We compared several term weights such as TFxIDF, MI, IG, and DF. As for the case study, we implemented the text classification of authority classification in complaint management system using the generated keyword list. The experiments on 245 Twitter data using keyword list generated from 2325 Twitter data showed that the best accuracy was achieved by using all term weights compared to only one term weight in the term distribution clustering.
基于词分布聚类的文本分类关键字列表生成实验
文本分类是文本挖掘中的一项重要任务。大多数研究人员在文本分类中采用单字权重类型。在这里,我们提出通过组合几个单词权重来构建一个基于规则的多标签文本分类的关键字列表。通过本研究,我们对术语分布聚类进行了实验,以产生最佳的自动生成关键字列表。我们比较了几个术语权重,如TFxIDF、MI、IG和DF。在案例研究中,我们利用生成的关键词列表实现了投诉管理系统中权限分类的文本分类。利用2325个Twitter数据生成的关键字列表对245个Twitter数据进行了实验,结果表明,在词分布聚类中,使用所有词权值比只使用一个词权值准确率更高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信