Chang Liu, S. Vaassen, Lakshmi Manoj, Xiaojie Zhan, C. Xu, Someshwar Rudra Ajay, Ziyue Lu, Max Wittstamm, Sa. Jain, Chao Zhang, Benny Drescher
{"title":"Automatic Labeling in Image Segmentation and Classification for TFT-LCD Manufacturing","authors":"Chang Liu, S. Vaassen, Lakshmi Manoj, Xiaojie Zhan, C. Xu, Someshwar Rudra Ajay, Ziyue Lu, Max Wittstamm, Sa. Jain, Chao Zhang, Benny Drescher","doi":"10.1109/ICMA54519.2022.9856233","DOIUrl":null,"url":null,"abstract":"Product quality inspection of Thin-film transistor-liquid crystal display (TFT-LCD) is time-consuming and labor-intensive. An automatic algorithm-based defect inspection system solves these problems by reducing the time and manual labor involved. This research work proposes an AI-based LCD inspection vision system that evaluates defects by AI-based defect segmentation and classification. Time-consuming pixel-level labeling of defects can be eliminated by applying weakly-supervised learning methods. The efforts of quality control personnel for model training can be reduced which is especially important in high-mix production with a high amount of changeovers and production process adjustments. Therefore, PP-CAM (Precise-Puzzle-CAM) based defect segmentation method is proposed to cope with diverse TFT-LCD defect shapes and sizes. Secondly, a region of interest-supported classification method is developed to enable cropping of small-scale TFT-LCD. The performance of the AI methods are investigated using industrial TFT-LCD manufacturing datasets of two manufacturing processes.","PeriodicalId":120073,"journal":{"name":"2022 IEEE International Conference on Mechatronics and Automation (ICMA)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Mechatronics and Automation (ICMA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMA54519.2022.9856233","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Product quality inspection of Thin-film transistor-liquid crystal display (TFT-LCD) is time-consuming and labor-intensive. An automatic algorithm-based defect inspection system solves these problems by reducing the time and manual labor involved. This research work proposes an AI-based LCD inspection vision system that evaluates defects by AI-based defect segmentation and classification. Time-consuming pixel-level labeling of defects can be eliminated by applying weakly-supervised learning methods. The efforts of quality control personnel for model training can be reduced which is especially important in high-mix production with a high amount of changeovers and production process adjustments. Therefore, PP-CAM (Precise-Puzzle-CAM) based defect segmentation method is proposed to cope with diverse TFT-LCD defect shapes and sizes. Secondly, a region of interest-supported classification method is developed to enable cropping of small-scale TFT-LCD. The performance of the AI methods are investigated using industrial TFT-LCD manufacturing datasets of two manufacturing processes.